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1

Introduction to Bonds

P A R T  O N E

Part One describes fi xed-income market analysis and the basic 

concepts relating to bond instruments. The analytic building 

blocks are generic and thus applicable to any market. The analy-

sis is simplest when applied to plain vanilla default-free bonds; 

as the instruments analyzed become more complex, additional 

techniques and assumptions are required. 

The fi rst two chapters of this section discuss bond pricing and 

yields, moving on to an explanation of such traditional interest 

rate risk measures as modifi ed duration and convexity. Chapter 3 

looks at spot and forward rates, the derivation of such rates from 

market yields, and the yield curve. Yield-curve analysis and the 

modeling of the term structure of interest rates are among the 

most heavily researched areas of fi nancial economics. The treat-

ment here has been kept as concise as possible. The References 

section at the end of the book directs interested readers to acces-

sible and readable resources that provide more detail. 

1



3

C H A P T E R  1

The Bond Instrument

Bonds are the basic ingredient of the U.S. debt-capital market, 
which is the cornerstone of the U.S. economy. All evening televi-
sion news programs contain a slot during which the newscaster 

informs viewers where the main stock market indexes closed that day and 
where key foreign exchange rates ended up. Financial sections of most 
newspapers also indicate at what yield the Treasury long bond closed. This 
coverage refl ects the fact that bond prices are affected directly by economic 
and political events, and yield levels on certain government bonds are fun-
damental economic indicators. The yield level on the U.S. Treasury long 
bond, for instance, mirrors the market’s view on U.S. interest rates, infl a-
tion, public-sector debt, and economic growth. 

The media report the bond yield level because it is so important to the 
country’s economy—as important as the level of the equity market and 
more relevant as an indicator of the health and direction of the economy. 
Because of the size and crucial nature of the debt markets, a large number 
of market participants, ranging from bond issuers to bond investors and 
associated intermediaries, are interested in analyzing them. This chapter 
introduces the building blocks of the analysis.

Bonds are debt instruments that represent cash fl ows payable during 
a specifi ed time period. They are essentially loans. The cash fl ows they 
represent are the interest payments on the loan and the loan redemption. 
Unlike commercial bank loans, however, bonds are tradable in a secondary 
market. Bonds are commonly referred to as fi xed-income instruments. This 
term goes back to a time when bonds paid fi xed coupons each year. That is 
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no longer necessarily the case. Asset-backed bonds, for instance, are issued 
in a number of tranches—related securities from the same issuer—each of 
which pays a different fi xed or fl oating coupon. Nevertheless, this is still 
commonly referred to as the fi xed-income market. 

In the past bond analysis was frequently limited to calculating gross 
redemption yield, or yield to maturity. Today basic bond math involves 
different concepts and calculations. These are described in several of the 
references for chapter 3, such as Ingersoll (1987), Shiller (1990), Neftci 
(1996), Jarrow (1996), Van Deventer (1997), and Sundaresan (1997). 
This chapter reviews the basic elements. Bond pricing, together with the 
academic approach to it and a review of the term structure of interest rates, 
are discussed in depth in chapter 3. 

In the analysis that follows, bonds are assumed to be default-free. This 
means there is no possibility that the interest payments and principal re-
payment will not be made. Such an assumption is entirely reasonable for 
government bonds such as U.S. Treasuries and U.K. gilt-edged securities. 
It is less so when you are dealing with the debt of corporate and lower-
rated sovereign borrowers. The valuation and analysis of bonds carrying 
default risk, however, are based on those of default-free government secu-
rities. Essentially, the yield investors demand from borrowers whose credit 
standing is not risk-free is the yield on government securities plus some 
credit risk premium.

The Time Value of Money
Bond prices are expressed “per 100 nominal”—that is, as a percentage 
of the bond’s face value. (The convention in certain markets is to quote 
a price per 1,000 nominal, but this is rare.) For example, if the price of 
a U.S. dollar–denominated bond is quoted as 98.00, this means that for 
every $100 of the bond’s face value, a buyer would pay $98. The principles 
of pricing in the bond market are the same as those in other fi nancial mar-
kets: the price of a fi nancial instrument is equal to the sum of the present 
values of all the future cash fl ows from the instrument. The interest rate 
used to derive the present value of the cash fl ows, known as the discount 
rate, is key, since it refl ects where the bond is trading and how its return is 
perceived by the market. All the factors that identify the bond—including 
the nature of the issuer, the maturity date, the coupon, and the currency 
in which it was issued—infl uence the bond’s discount rate. Comparable 
bonds have similar discount rates. The following sections explain the tra-
ditional approach to bond pricing for plain vanilla instruments, making 
certain assumptions to keep the analysis simple. After that, a more formal 
analysis is presented.
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Basic Features and Definitions
One of the key identifying features of a bond is its issuer, the entity that is 
borrowing funds by issuing the bond in the market. Issuers generally fall 
into one of four categories: governments and their agencies; local govern-
ments, or municipal authorities; supranational bodies, such as the World 
Bank; and corporations. Within the municipal and corporate markets 
there are a wide range of issuers that differ in their ability to make the 
interest payments on their debt and repay the full loan. An issuer’s ability 
to make these payments is identifi ed by its credit rating. 

Another key feature of a bond is its term to maturity: the number of 
years over which the issuer has promised to meet the conditions of the 
debt obligation. The practice in the bond market is to refer to the term to 
maturity of a bond simply as its maturity or term. Bonds are debt capital 
market securities and therefore have maturities longer than one year. This 
differentiates them from money market securities. Bonds also have more 
intricate cash fl ow patterns than money market securities, which usually 
have just one cash fl ow at maturity. As a result, bonds are more complex to 
price than money market instruments, and their prices are more sensitive 
to changes in the general level of interest rates.

A bond’s term to maturity is crucial because it indicates the period 
during which the bondholder can expect to receive coupon payments and 
the number of years before the principal is paid back. The principal of a 
bond—also referred to as its redemption value, maturity value, par value, 
or face value—is the amount that the issuer agrees to repay the bondholder 
on the maturity, or redemption, date, when the debt ceases to exist and the 
issuer redeems the bond. The coupon rate, or nominal rate, is the interest 
rate that the issuer agrees to pay during the bond’s term. The annual inter-
est payment made to bondholders is the bond’s coupon. The cash amount 
of the coupon is the coupon rate multiplied by the principal of the bond. 
For example, a bond with a coupon rate of 8 percent and a principal of 
$1,000 will pay an annual cash amount of $80. 

A bond’s term to maturity also infl uences the volatility of its price. All 
else being equal, the longer the term to maturity of a bond, the greater its 
price volatility. 

There are a large variety of bonds. The most common type is the 
plain vanilla, otherwise known as the straight, conventional, or bullet 
bond. A plain vanilla bond pays a regular—annual or semiannual—fi xed 
interest payment over a fi xed term. All other types of bonds are varia-
tions on this theme.

In the United States, all bonds make periodic coupon payments except 
for one type: the zero-coupon. Zero-coupon bonds do not pay any coupon. 
Instead investors buy them at a discount to face value and redeem them at 
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par. Interest on the bond is thus paid at maturity, realized as the difference 
between the principal value and the discounted purchase price. 

Floating-rate bonds, often referred to as fl oating-rate notes (FRNs), 
also exist. The coupon rates of these bonds are reset periodically accord-
ing to a predetermined benchmark, such as 3-month or 6-month LIBOR 
(London interbank offered rate). LIBOR is the offi cial benchmark rate at 
which commercial banks will lend funds to other banks in the interbank 
market. It is an average of the offered rates posted by all the main com-
mercial banks, and is reported by the British Bankers Association at 11.00 
hours each business day. For this reason, FRNs typically trade more like 
money market instruments than like conventional bonds. 

A bond issue may include a provision that gives either the bondholder 
or the issuer the option to take some action with respect to the other party. 
The most common type of option embedded in a bond is a call feature. 
This grants the issuer the right to “call” the bond by repaying the debt, 
fully or partially, on designated dates before the maturity date. A put provi-
sion gives bondholders the right to sell the issue back to the issuer at par 
on designated dates before the maturity date. A convertible bond contains a 
provision giving bondholders the right to exchange the issue for a specifi ed 
number of stock shares, or equity, in the issuing company. The presence of 
embedded options makes the valuation of such bonds more complicated 
than that of plain vanilla bonds.

Present Value and Discounting
Since fi xed-income instruments are essentially collections of cash fl ows, 
it is useful to begin by reviewing two key concepts of cash fl ow analysis: 
discounting and present value. Understanding these concepts is essential. 
In the following discussion, the interest rates cited are assumed to be the 
market-determined rates.

Financial arithmetic demonstrates that the value of $1 received today 
is not the same as that of $1 received in the future. Assuming an interest 
rate of 10 percent a year, a choice between receiving $1 in a year and re-
ceiving the same amount today is really a choice between having $1 a year 
from now and having $1 plus $0.10—the interest on $1 for one year at 
10 percent per annum. 

The notion that money has a time value is basic to the analysis of 
fi nancial instruments. Money has time value because of the opportunity 
to invest it at a rate of interest. A loan that makes one interest payment 
at maturity is accruing simple interest. Short-term instruments are usually 
such loans. Hence, the lenders receive simple interest when the instrument 
expires. The formula for deriving terminal, or future, value of an invest-
ment with simple interest is shown as (1.1).
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 FV PV r= +( )1  (1.1)

where
FV = the future value of the instrument
PV = the initial investment, or the present value, of the instrument
r = the interest rate

The market convention is to quote annualized interest rates: the rate 
corresponding to the amount of interest that would be earned if the in-
vestment term were one year. Consider a three-month deposit of $100 in a 
bank earning a rate of 6 percent a year. The annual interest gain would be 
$6. The interest earned for the ninety days of the deposit is proportional 
to that gain, as calculated below:

 
I90 6 00 6 00 0 2465 1 479= × = × =$ . $ . . $ .

90
365

The investor will receive $1.479 in interest at the end of the term. The 
total value of the deposit after the three months is therefore $100 plus 
$1.479. To calculate the terminal value of a short-term investment—that 
is, one with a term of less than a year—accruing simple interest, equation 
(1.1) is modifi ed as follows:

 
 FV PV r= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

1
days

year  (1.2)

where FV and PV are defi ned as above, 
r = the annualized rate of interest
days = the term of the investment
year = the number of days in the year

Note that, in the sterling markets, the number of days in the year 
is taken to be 365, but most other markets—including the dollar and 
euro markets—use a 360-day year. (These conventions are discussed 
more fully below.) 

Now consider an investment of $100, again at a fi xed rate of 6 per-
cent a year, but this time for three years. At the end of the fi rst year, the 
investor will be credited with interest of $6. Therefore for the second 
year the interest rate of 6 percent will be accruing on a principal sum of 
$106. Accordingly, at the end of year two, the interest credited will be 
$6.36. This illustrates the principle of compounding: earning interest on 
interest. Equation (1.3) computes the future value for a sum deposited 
at a compounding rate of interest:
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 FV PV r n= +( )1  (1.3)

where FV and PV are defi ned as before,
r = the periodic rate of interest (expressed as a decimal)
n = the number of periods for which the sum is invested

This computation assumes that the interest payments made during the 
investment term are reinvested at an interest rate equal to the fi rst year’s 
rate. That is why the example above stated that the 6 percent rate was fi xed 
for three years. Compounding obviously results in higher returns than 
those earned with simple interest. 

Now consider a deposit of $100 for one year, still at a rate of 6 percent 
but compounded quarterly. Again assuming that the interest payments 
will be reinvested at the initial interest rate of 6 percent, the total return at 
the end of the year will be

 
100 1 0 015 1 0 015 1 0 015 1 0 015× +( )× +( )× +( )× +( )⎡⎣ ⎤⎦. . . .

100 1= × +   00 015 100 1 6136 106 1364. . $ .( )⎡
⎣⎢

⎤
⎦⎥
= × =

The terminal value for quarterly compounding is thus about 13 cents 
more than that for annual compounded interest.

In general, if compounding takes place m times per year, then at the 
end of n years, mn interest payments will have been made, and the future 
value of the principal is computed using the formula (1.4).

 
FV PV r

m

mn
= +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟1

 (1.4)

As the example above illustrates, more frequent compounding results 
in higher total returns. FIGURE 1.1 shows the interest rate factors cor-
responding to different frequencies of compounding on a base rate of 6 
percent a year.  

This shows that the more frequent the compounding, the higher the 
annualized interest rate. The entire progression indicates that a limit can 
be defi ned for continuous compounding, i.e., where m = infi nity. To 
defi ne the limit, it is useful to rewrite equation (1.4) as (1.5).
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where 
w = m/r

As compounding becomes continuous and m and hence w approach 
infi nity, the expression in the square brackets in (1.5) approaches the 
mathematical constant e (the base of natural logarithmic functions), 
which is equal to approximately 2.718281.

Substituting e into (1.5) gives us

 FV PVern=  (1.6)

In (1.6) e rn is the exponential function of rn. It represents the continuously 
compounded interest rate factor. To compute this factor for an interest rate 
of 6 percent over a term of one year, set r to 6 percent and n to 1, giving

FIGURE 1.1  Impact of Compounding

Interest rate factor = 1+
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⎜⎜⎜
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⎟⎟⎟
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⎟⎟⎟

r = 1.061831
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 e ern = = ( ) =×0 06 1 0 062 718281 1 061837. .. .

The convention in both wholesale and personal, or retail, markets is 
to quote an annual interest rate, whatever the term of the investment, 
whether it be overnight or ten years. Lenders wishing to earn interest at the 
rate quoted have to place their funds on deposit for one year. For example, 
if you open a bank account that pays 3.5 percent interest and close it after 
six months, the interest you actually earn will be equal to 1.75 percent of 
your deposit. The actual return on a three-year building society bond that 
pays a 6.75 percent fi xed rate compounded annually is 21.65 percent. The 
quoted rate is the annual one-year equivalent. An overnight deposit in 
the wholesale, or interbank, market is still quoted as an annual rate, even 
though interest is earned for only one day.

Quoting annualized rates allows deposits and loans of different ma-
turities and involving different instruments to be compared. Be careful 
when comparing interest rates for products that have different payment 
frequencies. As shown in the earlier examples, the actual interest earned 
on a deposit paying 6 percent semiannually will be greater than on one 
paying 6 percent annually. The convention in the money markets is 
to quote the applicable interest rate taking into account payment fre-
quency. 

The discussion thus far has involved calculating future value given 
a known present value and rate of interest. For example, $100 invested 
today for one year at a simple interest rate of 6 percent will generate 100 
× (1 + 0.06) = $106 at the end of the year. The future value of $100 in 
this case is $106. Conversely, $100 is the present value of $106, given the 
same term and interest rate. This relationship can be stated formally by 
rearranging equation (1.3) as shown in (1.7).

 PV FV
r n

=
+( )1

 (1.7)

Equation (1.7) applies to investments earning annual interest pay-
ments, giving the present value of a known future sum.

To calculate the present value of an investment, you must prorate the 
interest that would be earned for a whole year over the number of days in 
the investment period, as was done in (1.2). The result is equation (1.8).

 
PV FV

r
=

+ ×( )1   days
year  (1.8)
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When interest is compounded more than once a year, the formula for 
calculating present value is modifi ed, as it was in (1.4). The result is shown 
in equation (1.9).

 
PV FV

r
m

mn=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟1 +  (1.9)

For example, the present value of $100 to be received at the end of 
fi ve years, assuming an interest rate of 5 percent, with quarterly com-
pounding is

 PV =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=( )( )
100

1 + 0.05
4

$78.004 5

Interest rates in the money markets are always quoted for standard 
maturities, such as overnight, “tom next” (the overnight interest rate start-
ing tomorrow, or “tomorrow to the next”), “spot next” (the overnight rate 
starting two days forward), one week, one month, two months, and so 
on, up to one year. If a bank or corporate customer wishes to borrow for 
a nonstandard period, or “odd date,” an interbank desk will calculate the 
rate chargeable, by interpolating between two standard-period interest 
rates. Assuming a steady, uniform increase between standard periods, the 
required rate can be calculated using the formula for straight line interpo-
lation, which apportions the difference equally among the stated intervals. 
This formula is shown as (1.10).

 r r r r n n
n n

= + −( )× −
−1 2 1

1

2 1
 (1.10)

where
r = the required odd-date rate for n days
r 1 = the quoted rate for n 1 days
r 2 = the quoted rate for n 2 days

Say the 1-month (30-day) interest rate is 5.25 percent and the 2-month 
(60-day) rate is 5.75 percent. If a customer wishes to borrow money for 40 
days, the bank can calculate the required rate using straight line interpola-
tion as follows: the difference between 30 and 40 is one-third that between 
30 and 60, so the increase from the 30-day to the 40-day rate is assumed to 
be one-third the increase between the 30-day and the 60-day rates, giving 
the following computation
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5 25

5 75 5 25
3

5 4167.
. .

. percent
 percent  percent

 percent+
( )

=
-

What about the interest rate for a period that is shorter or longer than 
the two whose rates are known, rather than lying between them? What 
if the customer in the example above wished to borrow money for 64 
days? In this case, the interbank desk would extrapolate from the relation-
ship between the known 1-month and 2-month rates, again assuming a 
uniform rate of change in the interest rates along the maturity spectrum. 
So given the 1-month rate of 5.25 percent and the 2-month rate of 5.75 
percent, the 64-day rate would be

 5 25 5 75 5 25
34
30

5 8167. . . .+ ( )×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=-  percent

Just as future and present value can be derived from one another, given 
an investment period and interest rate, so can the interest rate for a period 
be calculated given a present and a future value. The basic equation is 
merely rearranged again to solve for r. This, as will be discussed below, is 
known as the investment’s yield.

Discount Factors
An n-period discount factor is the present value of one unit of currency 
that is payable at the end of period n. Essentially, it is the present value 
relationship expressed in terms of $1. A discount factor for any term is 
given by formula (1.11).

 d
rn n=
+( )
1

1  (1.11)

where n = the period of discount

For instance, the fi ve-year discount factor for a rate of 6 percent com-
pounded annually is 

 
d5 5

1
1 0 06

0 747258=
+( )

=
.

.

The set of discount factors for every period from one day to thirty years 
and longer is termed the discount function. Since the following discussion 
is in terms of PV, discount factors may be used to value any fi nancial in-
strument that generates future cash fl ows. For example, the present value 
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of an instrument generating a cash fl ow of $103.50 payable at the end of 
six months would be determined as follows, given a six-month discount 
factor of 0.98756:

 

 PV FV
r

FV dn n=
+( )

= × = × =
1

103 50 0 98756 102 212$ . . $ .

Discount factors can also be used to calculate the future value of a 
present investment by inverting the formula. In the example above, the 
six-month discount factor of 0.98756 signifi es that $1 receivable in six 
months has a present value of $0.98756. By the same reasoning, $1 today 
would in six months be worth

 1 1
0 987560 5d . .

= = $1.0126

It is possible to derive discount factors from current bond prices. This 
process can be illustrated using the set of hypothetical bonds, all assumed 
to have semiannual coupons, that are shown in FIGURE 1.2, together with 
their prices. 

The fi rst bond in fi gure 1.2 matures in precisely six months. Its fi nal 
cash fl ow will be $103.50, comprising the fi nal coupon payment of $3.50 
and the redemption payment of $100. The price, or present value, of this 
bond is $101.65. Using this, the six-month discount factor may be calcu-
lated as follows:

 d0 5
101 65
103 50

0 98213.
.
.

.= =

FIGURE 1.2  Hypothetical Set of Bonds and Bond Prices

  COUPON MATURITY DATE PRICE

7% 7-Jun-01 101.65

8% 7-Dec-01 101.89

6% 7-Jun-02 100.75

6.50% 7-Dec-02 100.37
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Using this six-month discount factor, the one-year factor can be derived 
from the second bond in fi gure 1.2, the 8 percent due 2001. This bond pays 
a coupon of $4 in six months and, in one year, makes a payment of $104, 
consisting of another $4 coupon payment plus $100 return of principal.

The price of the one-year bond is $101.89. As with the 6-month bond, 
the price is also its present value, equal to the sum of the present values of its 
total cash fl ows. This relationship can be expressed in the following equation:

 101 89 4 1040 5 1. .= × + ×d d

The value of d 0.5 is known to be 0.98213. That leaves d1 as the only 
unknown in the equation, which may be rearranged to solve for it:

 
d1

101 89 4 0 98213
104

97 96148
104

0 94194=
− ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = =

. . .
.

The same procedure can be repeated for the remaining two bonds, 
using the discount factors derived in the previous steps to derive the set 
of discount factors in FIGURE 1.3. These factors may also be graphed as a 
continuous function, as shown in FIGURE 1.4.

This technique of calculating discount factors, known as bootstrap-
ping, is conceptually neat, but may not work so well in practice. Prob-
lems arise when you do not have a set of bonds that mature at precise 
six-month intervals. Liquidity issues connected with individual bonds 
can also cause complications. This is true because the price of the bond, 
which is still the sum of the present values of the cash fl ows, may refl ect 
liquidity considerations (e.g., hard to buy or sell the bond, diffi cult to 
fi nd) that do not refl ect the market as a whole but peculiarities of that 

FIGURE 1.3  Discount Factors Calculated Using Bootstrapping 
Technique

  COUPON MATURITY DATE TERM (YEARS) PRICE D(N)

7% 7-Jun-01 0.5 101.65 0.98213

8% 7-Dec-01 1.0 101.89 0.94194

6% 7-Jun-02 1.5 100.75 0.92211

6.50% 7-Dec-02 2.0 100.37 0.88252
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specifi c bond. The approach, however, is still worth knowing.
Note that the discount factors in fi gure 1.3 decrease as the bond’s 

maturity increases. This makes intuitive sense, since the present value of 
something to be received in the future diminishes the farther in the future 
the date of receipt lies.

Bond Pricing and Yield: 
The Traditional Approach

The discount rate used to derive the present value of a bond’s cash fl ows 
is the interest rate that the bondholders require as compensation for the 
risk of lending their money to the issuer. The yield investors require on a 
bond depends on a number of political and economic factors, including 
what other bonds in the same class are yielding. Yield is always quoted 
as an annualized interest rate. This means that the rate used to discount 
the cash fl ows of a bond paying semiannual coupons is exactly half the 
bond’s yield. 

Bond Pricing
The fair price of a bond is the sum of the present values of all its cash fl ows, 
including both the coupon payments and the redemption payment. The 
price of a conventional bond that pays annual coupons can therefore be 
represented by formula (1.12).

FIGURE 1.4  Hypothetical Discount Function

Term to maturity (years)
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where
P = the bond’s fair price
C = the annual coupon payment
r = the discount rate, or required yield
N = the number of years to maturity, and so the number of interest 

periods for a bond paying an annual coupon 
M = the maturity payment, or par value, which is usually 100 percent 

of face value

Bonds in the U.S. domestic market—as opposed to international 
securities denominated in U.S. dollars, such as USD Eurobonds—usually 
pay semiannual coupons. Such bonds may be priced using the expression 
in (1.13), which is a modifi cation of (1.12) allowing for twice-yearly 
discounting.
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Note that 2 N is now the power to which the discount factor is raised. 
This is because a bond that pays a semiannual coupon makes two interest 
payments a year. It might therefore be convenient to replace the number 
of years to maturity with the number of interest periods, which could be 
represented by the variable n, resulting in formula (1.14).
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 (1.14)
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This formula calculates the fair price on a coupon payment date, so 
there is no accrued interest incorporated into the price. Accrued interest is an 
accounting convention that treats coupon interest as accruing every day a 
bond is held; this accrued amount is added to the discounted present value 
of the bond (the clean price) to obtain the market value of the bond, known 
as the dirty price. The price calculation is made as of the bond’s settlement 
date, the date on which it actually changes hands after being traded. For a 
new bond issue, the settlement date is the day when the investors take deliv-
ery of the bond and the issuer receives payment. The settlement date for a 
bond traded in the secondary market—the market where bonds are bought 
and sold after they are fi rst issued—is the day the buyer transfers payment 
to the seller of the bond and the seller transfers the bond to the buyer. 

Different markets have different settlement conventions. U.K. gilts, 
for example, normally settle on “T + 1”: one business day after the trade 
date, T. Eurobonds, on the other hand, settle on T + 3. The term value 
date is sometimes used in place of settlement date, however, the two terms 
are not strictly synonymous. A settlement date can fall only on a busi-
ness day; a bond traded on a Friday, therefore, will settle on a Monday. 
A value date, in contrast, can sometimes fall on a non-business day—when 
accrued interest is being calculated, for example.

Equation (1.14) assumes an even number of coupon payment dates 
remaining before maturity. If there are an odd number, the formula is 
modifi ed as shown in (1.15).

 

P C
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 (1.15)

Another assumption embodied in the standard formula is that the 
bond is traded for settlement on a day that is precisely one interest period 
before the next coupon payment. If the trade takes place between coupon 
dates, the formula is modifi ed. This is done by adjusting the exponent for 
the discount factor using ratio i, shown in (1.16).

 
i = Days from value date to next coupon date

Days in the interrest period   (1.16)

The denominator of this ratio is the number of calendar days between 
the last coupon date and the next one. This fi gure depends on the day-
count convention (see below) used for that particular bond. Using i, the 
price formula is modifi ed as (1.17) (for annual-coupon-paying bonds; for 
bonds with semiannual coupons, r /2 replaces r).
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where the variables C, M, n, and r are as before

As noted above, the bond market includes securities, known as zero-
coupon bonds, or strips, that do not pay coupons. These are priced by 
setting C to 0 in the pricing equation. The only cash fl ow is the maturity 
payment, resulting in formula (1.18) 

 
P M

r N
=

+( )1  (1.18)

where M and r are as before and N is the number of years to maturity 

Note that, even though these bonds pay no actual coupons, their 
prices and yields must be calculated on the basis of quasi-coupon pe-
riods, which are based on the interest periods of bonds denominated 
in the same currency. A U.S. dollar or a sterling fi ve-year zero-coupon 
bond, for example, would be assumed to cover ten quasi-coupon peri-

EXAMPLE: Calculating Consideration for a U.S. Treasury

The consideration, or actual cash proceeds paid by a buyer for a 
bond, is the bond’s total cash value together with any costs such 
as commission. In this example, consideration refers only to the 
cash value of the bond. 

What consideration is payable for $5 million nominal of a U.S. 
Treasury, quoted at a price of 99-16?

The U.S. Treasury price is 99-16, which is equal to 99 and 
16/32, or 99.50 per $100. The consideration is therefore:

0.9950 × 5,000,000 = $4,975,000

If the price of a bond is below par, the total consideration is 
below the nominal amount; if it is priced above par, the consider-
ation will be above the nominal amount.
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ods, and the price equation would accordingly be modifi ed as (1.19).

 
P M

r
n=

+( )1 1
2  (1.19)

It is clear from the bond price formula that a bond’s yield and its price 
are closely related. Specifi cally, the price moves in the opposite direction 
from the yield. This is because a bond’s price is the net present value of its 
cash fl ows; if the discount rate—that is, the yield required by investors—
increases, the present values of the cash fl ows decrease. In the same way, if 
the required yield decreases, the price of the bond rises. The relationship 
between a bond’s price and any required yield level is illustrated by the 
graph in FIGURE 1.5, which plots the yield against the corresponding price 
to form a convex curve.  

Bond Yield
The discussion so far has involved calculating the price of a bond given its 
yield. This procedure can be reversed to fi nd a bond’s yield when its price 
is known. This is equivalent to calculating the bond’s internal rate of re-
turn, or IRR, also known as its yield to maturity or gross redemption yield 

EXAMPLE: Zero-Coupon Bond Price

A. Calculate the price of a Treasury strip with a maturity of precisely 
fi ve years corresponding to a required yield of 5.40 percent. 

According to these terms, N = 5, so n = 10, and r = 0.054, so 
r /2 = 0.027. M = 100, as usual. Plugging these values into the 
pricing formula gives

                    
P =

( )
=

100
1 027 10.

$76.611782

B. Calculate the price of a French government zero-coupon bond 
with precisely fi ve years to maturity, with the same required yield 
of 5.40 percent. Note that French government bonds pay coupon 
annually.

  
P = = ¨

100
1 054 5.( )

76.877092€
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(also yield to workout). These are among the various measures used in the 
markets to estimate the return generated from holding a bond. 

In most markets, bonds are traded on the basis of their prices. Because 
different bonds can generate different and complicated cash fl ow patterns, 
however, they are generally compared in terms of their yields. For example, 
market makers usually quote two-way prices at which they will buy or sell 
particular bonds, but it is the yield at which the bonds are trading that 
is important to the market makers’ customers. This is because a bond’s 
price does not tell buyers anything useful about what they are getting. 

Summary of the Price/Yield Relationship

❑ At issue, if a bond is priced at par, its coupon will equal the 
yield that the market requires, refl ecting factors such as the bond’s 
term to maturity, the issuer’s credit rating, and the yield on current 
bonds of comparable quality. 
❑ If the required yield rises above the coupon rate, the bond 
price will decrease.
❑ If the required yield goes below the coupon rate, the bond 
price will increase.

FIGURE 1.5  The Price/Yield Relationship

Yield

Price

P

r
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Remember that in any market a number of bonds exist with different is-
suers, coupons, and terms to maturity. It is their yields that are compared, 
not their prices. 

The yield on any investment is the discount rate that will make the 
present value of its cash fl ows equal its initial cost or price. Mathemati-
cally, an investment’s yield, represented by r, is the interest rate that satis-
fi es the bond price equation, repeated here as (1.20).
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 (1.20)

Other types of yield measure, however, are used in the market for dif-
ferent purposes. The simplest is the current yield, also know as the fl at, 
interest, or running yield. These are computed by formula (1.21).

 
rc C

P
= ×  100

 (1.21) 

where rc is the current yield

In this equation the percentage for C is not expressed as a decimal. 
Current yield ignores any capital gain or loss that might arise from hold-
ing and trading a bond and does not consider the time value of money. 
It calculates the coupon income as a proportion of the price paid for the 
bond. For this to be an accurate representation of return, the bond would 
have to be more like an annuity than a fi xed-term instrument.

Current yield is useful as a “rough and ready” interest rate calcula-
tion; it is often used to estimate the cost of or profi t from holding a bond 
for a short term. For example, if short-term interest rates, such as the 
one-week or three-month, are higher than the current yield, holding the 
bond is said to involve a running cost. This is also known as negative carry 
or negative funding. The concept is used by bond traders, market makers, 
and leveraged investors, but it is useful for all market practitioners, since 
it represents the investor’s short-term cost of holding or funding a bond. 
The yield to maturity (YTM)—or, as it is known in sterling markets, 
gross redemption yield—is the most frequently used measure of bond 
return. Yield to maturity takes into account the pattern of coupon pay-
ments, the bond’s term to maturity, and the capital gain (or loss) arising 
over the remaining life of the bond. The bond price formula shows the 
relationship between these elements and demonstrates their importance 
in determining price. The YTM calculation discounts the cash fl ows to 
maturity, employing the concept of the time value of money.
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EXAMPLE: Yield to Maturity for Semiannual-Coupon Bond

A bond paying a semiannual coupon has a dirty price of $98.50, an 
annual coupon of 3 percent, and exactly one year before maturity. The 
bond therefore has three remaining cash fl ows: two coupon payments 
of $1.50 each and a redemption payment of $100. Plugging these 
values into equation (1.20) gives 

98 50
1 50

1
103 50

11
2

1
2

2.
. .

=
+( )

+
+( )rm rm

Note that the equation uses half of the YTM value rm because this 
is a semiannual paying bond. 

The expression above is a quadratic equation, which can be rear-
ranged as 98 50 1 50 103 50 02. . .x x− − = , where x = (1 + rm/2).

The equation may now be solved using the standard solution for 
equations of the form 

ax bx c2 0+ + =

x b b ac
a

=
− ± −2 4

2

There are two solutions, only one of which gives a positive redemp-
tion yield. The positive solution is

rm rm
2

0 022755 4 551= =. ., or percent 

YTM can also be calculated using mathematical iteration. Start 
with a trial value for rm of r1 = 4 percent and plug this into the right-
hand side of equation 1.20. This gives a price P1 of 99.050, which is 
higher than the dirty market price PM of 98.50. The trial value for rm 
was therefore too low. 

Next try r2 = 5 percent. This generates a price P2 of 98.114, which 
is lower than the market price. Because the two trial prices lie on 
either side of the market value, the correct value for rm must lie be-
tween 4 and 5 percent. Now use the formula for linear interpolation

rm r r r P P
P P

M= + −( ) −
−1 2 1

1

1 2

Plugging in the appropriate values gives a linear approximation for 
the redemption yield of rm = 4.549 percent, which is near the solu-
tion obtained by solving the quadratic equation.
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Calculating the redemption yield of bonds that pay semiannual cou-
pons involves the semiannual discounting of those payments. This ap-
proach is appropriate for most U.S. bonds and U.K. gilts. Government 
bonds in most of continental Europe and most Eurobonds, however, pay 
annual coupon payments. The appropriate method of calculating their 
redemption yields is to use annual discounting. The two yield measures 
are not directly comparable. 

It is possible to make a Eurobond directly comparable with a U.K. gilt 
by using semiannual discounting of the former’s annual coupon payments 
or using annual discounting of the latter’s semiannual payments. The for-
mulas for the semiannual and annual calculations appeared above as (1.13) 
and (1.12), respectively, and are repeated here as (1.22) and (1.23).
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Consider a bond with a dirty price—including the accrued interest 
the seller is entitled to receive—of $97.89, a coupon of 6 percent, and 
fi ve years to maturity. FIGURE 1.6 shows the gross redemption yields this 

FIGURE 1.6  Yield and Payment Frequency

   DISCOUNTING PAYMENTS YIELD TO MATURITY

Semiannual Semiannual 6.500

Annual Annual 6.508

Semiannual Annual 6.428

Annual Semiannual 6.605
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bond would have under the different yield-calculation conventions.
These fi gures demonstrate the impact that the coupon-payment and 

discounting frequencies have on a bond’s redemption yield calculation. 
Specifi cally, increasing the frequency of discounting lowers the calculated 
yield, while increasing the frequency of payments raises it. When compar-
ing yields for bonds that trade in markets with different conventions, it is 
important to convert all the yields to the same calculation basis.

It might seem that doubling a semiannual yield fi gure would produce 
the annualized equivalent; the real result, however, is an underestimate of 
the true annualized yield. This is because of the multiplicative effects of 
discounting. The correct procedure for converting semiannual and quar-
terly yields into annualized ones is shown in (1.24).

a. General formula

 rma
m= +( ) −1 1interest rate  (1.24)

where m = the number of coupon payments per year 

b. Formulas for converting between semiannual and annual yields
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EXAMPLE: Comparing Yields to Maturity

A U.S. Treasury paying semiannual coupons, with a maturity of ten 
years, has a quoted yield of 4.89 percent. A European government 
bond with a similar maturity is quoted at a yield of 4.96 percent. 
Which bond has the higher yield to maturity in practice? 

The effective annual yield of the Treasury is

rma = + ×( ) − =1 0 0489 1 4 94981
2

2
. .  percent

Comparing the securities using the same calculation basis 
reveals that the European government bond does indeed have the 
higher yield.
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c. Formulas for converting between quarterly and annual yields
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where rmq, rms, and rma are, respectively, the quarterly, semiannually, and 
annually discounted yields to maturity.

The market convention is sometimes simply to double the semiannual 
yield to obtain the annualized yields, despite the fact that this produces an 
inaccurate result. It is only acceptable to do this for rough calculations. An 
annualized yield obtained in this manner is known as a bond equivalent 
yield. It was noted earlier that the one disadvantage of the YTM measure 
is that its calculation incorporates the unrealistic assumption that each 
coupon payment, as it becomes due, is reinvested at the rate rm. Another 
disadvantage is that it does not deal with the situation in which inves-
tors do not hold their bonds to maturity. In these cases, the redemption 
yield will not be as great. Investors might therefore be interested in other 
measures of return, such as the equivalent zero-coupon yield, considered 
a true yield.

To review, the redemption yield measure assumes that
❑  the bond is held to maturity
❑   all coupons during the bond’s life are reinvested at the same 

(redemption yield) rate

Given these assumptions, the YTM can be viewed as an expected or an-
ticipated yield. It is closest to reality when an investor buys a bond on fi rst 
issue and holds it to maturity. Even then, however, the actual realized yield 
at maturity would be different from the YTM because of the unrealistic 
nature of the second assumption. It is clearly unlikely that all the coupons 
of any but the shortest-maturity bond will be reinvested at the same rate. 
As noted earlier, market interest rates are in a state of constant fl ux, and 
this would affect money reinvestment rates. Therefore, although yield to 
maturity is the main market measure of bond levels, it is not a true interest 
rate. This is an important point. Chapter 2 will explore the concept of a 
true interest rate.

Another problem with YTM is that it discounts a bond’s coupons at 
the yield specifi c to that bond. It thus cannot serve as an accurate basis 
for comparing bonds. Consider a two-year and a fi ve-year bond. These 
securities will invariably have different YTMs. Accordingly, the coupon 
cash fl ows they generate in two years’ time will be discounted at different 
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rates (assuming the yield curve is not fl at). This is clearly not correct. The 
present value calculated today of a cash fl ow occurring in two years’ time 
should be the same whether that cash fl ow is generated by a short- or a 
long-dated bond. 

Accrued Interest
All bonds except zero-coupon bonds accrue interest on a daily basis that is 
then paid out on the coupon date. As mentioned earlier, the formulas dis-
cussed so far calculate bonds’ prices as of a coupon payment date, so that 
no accrued interest is incorporated in the price. In all major bond markets, 
the convention is to quote this so-called clean price. 

Clean and Dirty Bond Prices
When investors buy a bond in the market, what they pay is the bond’s all-
in price, also known as the dirty, or gross price, which is the clean price of 
a bond plus accrued interest. 

Bonds trade either ex-dividend or cum dividend. The period between 
when a coupon is announced and when it is paid is the ex-dividend pe-
riod. If the bond trades during this time, it is the seller, not the buyer, who 
receives the next coupon payment. Between the coupon payment date and 
the next ex-dividend date the bond trades cum dividend, so the buyer gets 
the next coupon payment. 

Accrued interest compensates sellers for giving up all the next coupon 
payment even though they will have held their bonds for part of the period 
since the last coupon payment. A bond’s clean price moves with market 
interest rates. If the market rates are constant during a coupon period, the 
clean price will be constant as well. In contrast, the dirty price for the same 
bond will increase steadily as the coupon interest accrues from one coupon 
payment date until the next ex-dividend date, when it falls by the pres-
ent value of the amount of the coupon payment. The dirty price at this 
point is below the clean price, refl ecting the fact that accrued interest is 
now negative. This is because if the bond is traded during the ex-dividend 
period, the seller, not the buyer, receives the next coupon, and the lower 
price is the buyer’s compensation for this loss. On the coupon date, the 
accrued interest is zero, so the clean and dirty prices are the same. 

The net interest accrued since the last ex-dividend date is calculated 
using formula (1.25).

 AI C N Nxt xc= ×
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

Day Base  (1.25)
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where
AI = the next accrued interest
C = the bond coupon
Nxc = the number of days between the ex-dividend date and the coupon 

payment date 
Nxt = the number of days between the ex-dividend date and the date 

for the calculation
Day Base = the day-count base (see below)

When a bond is traded, accrued interest is calculated from and in-
cluding the last coupon date up to and excluding the value date, usually 
the settlement date. Interest does not accrue on bonds whose issuer has 
defaulted. 

As noted earlier, for bonds that are trading ex-dividend, the accrued 
coupon is negative and is subtracted from the clean price. The negative 
accrued interest is calculated using formula (1.26).

 
AI C= − ×  

days to next coupon
Day Base  (1.26)

Certain classes of bonds—U.S. Treasuries and Eurobonds, for example
—do not have ex-dividend periods and therefore trade cum dividend right 
up to the coupon date.

Day-Count Conventions
In calculating the accrued interest on a bond, the market uses the day-
count convention appropriate to that bond. These conventions govern 
both the number of days assumed to be in a calendar year and how the 
days between two dates are fi gured. FIGURE 1.7 shows how the different 
conventions affect the accrual calculation. 

In these conventions, the number of days between two dates in-
cludes the fi rst date but not the second. Thus, using actual/365, there 
are thirty-seven days between August 4 and September 10. The last two 
conventions assume thirty days in each month, no matter what the 
calendar says. So, for example, it is assumed that there are thirty days 
between 10 February and 10 March. Under the 30/360 convention, if 
the fi rst date is the 31st, it is changed to the 30th; if the second date is 
the 31st and the fi rst date is either the 30th or the 31st, the second date 
is changed to the 30th. The 30E/360 convention differs from this in that 
if the second date is the 31st, it is changed to the 30th regardless of what 
the fi rst date is. 
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FIGURE 1.7  Accrued Interest, Day-Count Conventions

Actual/365 AI = C × actual days to next coupon payment/365

Actual/360 AI = C × actual days to next coupon/360

Actual/actual AI = C ×  actual days to next coupon/actual number 
of days in the interest period

30/360 AI = C ×  days to next coupon, assuming 30 days in 
a month/360

30E/360 AI = C ×  days to next coupon, assuming 30 days in 
a month/360
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C H A P T E R  2

Bond Instruments and
Interest Rate Risk

Chapter 1 described the basic concepts of bond pricing. This 
chapter discusses the sensitivity of bond prices to changes in 
market interest rates and the key related concepts of duration 

and convexity.

Duration, Modified Duration, and Convexity
Most bonds pay a part of their total return during their lifetimes, in the 
form of coupon interest. Because of this, a bond’s term to maturity does 
not refl ect the true period over which its return is earned. Term to matu-
rity also fails to give an accurate picture of the trading characteristics of a 
bond or to provide a basis for comparing it with other bonds having simi-
lar maturities. Clearly, a more accurate measure is needed. 

A bond’s maturity gives little indication of how much of its return is 
paid out during its life or of the timing and size of its cash fl ows. Matu-
rity is thus inadequate as an indicator of the bond’s sensitivity to moves 
in market interest rates. To see why this is so, consider two bonds with 
the same maturity date but different coupons: the higher-coupon bond 
generates a larger proportion of its return in the form of coupon pay-
ments than does the lower-coupon bond and so pays out its return at a 
faster rate. Because of this, the higher-coupon bond’s price is theoretically 
less sensitive to fl uctuations in interest rates that occur during its lifetime. 
A better indication of a bond’s payment characteristics and interest rate 
sensitivity might be the average time to receipt of its cash fl ows. The cash 
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fl ows generated during a bond’s life differ in value, however. The average 
time to receipt would be a more accurate measure, therefore, if it were 
weighted according to the cash fl ows’ present values. The average maturity 
of a bond’s cash fl ow stream calculated in this manner provides a measure 
of the speed at which a bond pays out its return, and hence of its price risk 
relative to other bonds having the same maturity. 

The average time until receipt of a bond’s cash fl ows, weighted accord-
ing to the present values of these cash fl ows, measured in years, is known 
as duration or Macaulay’s duration, referring to the man who introduced 
the concept in 1938—see Macaulay (1999) in References. Macaulay in-
troduced duration as an alternative for the length of time remaining before 
a bond reached maturity.

Duration
Duration is a measure of price sensitivity to interest rates—that is, how 
much a bond’s price changes in response to a change in interest rates. In 
mathematics, change like this is often expressed in terms of differential 
equations. The price-yield formula for a plain vanilla bond, introduced 
in chapter 1, is repeated as (2.1) below. It assumes complete years to 
maturity, annual coupon payments, and no accrued interest at the cal-
culation date.
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where
P = the bond’s fair price
C = the annual coupon payment
r = the discount rate, or required yield
N = the number of years to maturity, and so the number of interest 

periods for a bond paying an annual coupon 
M = the maturity payment 

Chapter 1 showed that the price and yield of a bond are two sides of 
the same relationship. Because price P is a function of yield r, we can dif-
ferentiate the price/yield equation at (2.1), as shown in (2.2). Taking the 
fi rst derivative of this expression gives (2.2).
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Rearranging (2.2) gives (2.3). The expression in brackets is the aver-
age time to maturity of the cash fl ows from a bond weighted according 
to the present value of each cash fl ow. The whole equation is the formula 
for calculating the approximate change in price corresponding to a small 
change in yield.
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Dividing both sides of (2.3) by P results in expression (2.4).
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Dividing the bracketed expression by P gives expression (2.5), which is 
the defi nition of Macaulay duration, measured in years.
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Equation (2.5) can be simplifi ed using ∑ , as shown in (2.6). 
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where Cn = the bond cash fl ow at time n

If the expression for Macaulay duration, (2.5), is substituted into equa-
tion (2.4), which calculates the approximate percentage change in price, 
(2.7) is obtained. This is the defi nition of modifi ed duration.
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Modifi ed duration can be used to demonstrate that small changes in 
yield produce inverse changes in bond price. This relationship is expressed 
formally in (2.7), repeated as (2.9).

EXAMPLE: Calculating the Macaulay Duration for the 8 Percent            
    2009 Annual Coupon Bond

Issued 30 September 1999
Maturity 30 September 2009
Price $102.497
Yield 7.634 percent

  PERIOD (N ) CASH FLOW PV AT CURRENT YIELD * N X PV

1 8 7.43260 7.4326

2 8 6.90543 13.81086

3 8 6.41566 19.24698

4 8 5.96063 23.84252

5 8 5.53787 27.68935

6 8 5.14509 30.87054

7 8 4.78017 33.46119

8 8 4.44114 35.529096

9 8 4.12615 37.13535

10 108 51.75222 517.5222

TOTAL  102.49696 746.540686

*Calculated as C/(1 + r )n  

Macaulay duration = 746.540686 / 102.497

 = 7.283539998 years
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dP
dr P

D1
= − mod (2.9)

It is possible to shorten the procedure of computing Macaulay dura-
tion longhand, by rearranging the bond-price formula (2.1) as shown in 
(2.10), which, as explained in chapter 1, calculates price as the sum of the 
present values of its coupons and its redemption payment. The same as-
sumptions apply as for (2.1).
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Taking the fi rst derivative of (2.10) and dividing the result by the 
current bond price, P,  produces an alternative formulation for modifi ed 
duration, shown as (2.11).
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Multiplying (2.11) by (1 + r) gives the equation for Macaulay duration. 
The example on the following page shows how these shorthand formulas 
can be used to calculate modifi ed and Macaulay durations. 

Up to this point the discussion has involved plain vanilla bonds. But 
duration applies to all bonds, even those that have no conventional ma-
turity date, the so-called perpetual, or irredeemable, bonds (also known 
as annuity bonds), which pay out interest for an indefi nite period. Since 
these make no redemption payment, the second term on the right side of 
the duration equation disappears, and since coupon payments can stretch 
on indefi nitely, n approaches infi nity. The result is equation (2.12), for 
Macaulay duration.

 
D

rc
=

1
 (2.12)

where rc = (C/Pd ) is the running yield (or current yield ) of the bond

Equation (2.12) represents the limiting value to duration. For bonds 
trading at or above par, duration increases with maturity, approaching 
the value given by (2.12), which acts as a ceiling. For bonds trading at a 
discount to par, duration increases to a maximum of around twenty years 
and then declines toward the fl oor given by (2.12). In general, duration 
increases with maturity, with an upper bound given by (2.12).
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Properties of Macaulay Duration
Duration varies with maturity, coupon, and yield. Broadly, it increases 
with maturity. A bond’s duration is generally shorter than its maturity. 
This is because the cash fl ows received in the early years of the bond’s 
life have the greatest present values and therefore are given the greatest 
weight. That shortens the average time in which cash fl ows are received. 
A zero-coupon bond’s cash fl ows are all received at redemption, so there is 
no present-value weighting. Therefore, a zero-coupon bond’s duration is 
equal to its term to maturity. 

Duration increases as coupon and yield decrease. The lower the cou-
pon, the greater the relative weight of the cash fl ows received on the ma-
turity date, and this causes duration to rise. Among the non–plain vanilla 
types of bonds are some whose coupon rate varies according to an index, 
usually the consumer price index. Index-linked bonds generally have 
much lower coupons than vanilla bonds with similar maturities. This is 
true because they are infl ation-protected, causing the real yield required to 
be lower than the nominal yield, but their durations tend to be higher. 

EXAMPLE:  Calculating the Modified and Macaulay Durations 
as of 1999 of a Hypothetical Bond Having an Annual 
Coupon of 8 Percent and a Maturity Date of 2009

Coupon  8 percent, paid annually
Yield 7.634 percent
n 10
Price $102.497

Plugging these values into the modifi ed-duration equation 
(2.11) gives
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Dmod = 6.76695 years

To obtain the bond’s Macaulay duration, this modifi ed duration 
is multiplied by (1 + r ), or 1.07634, for a value of 7.28354 years.
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Yield’s relationship to duration is a function of its role in discounting 
future cash fl ows. As yield increases, the present values of all future cash 
fl ows fall, but those of the more distant cash fl ows fall relatively more. This 
has the effect of increasing the relative weight of the earlier cash fl ows and 
hence of reducing duration. 

Modified Duration
Although newcomers to the market commonly consider duration, much 
as Macaulay did, a proxy for a bond’s time to maturity, this interpretation 
misses the main point of duration, which is to measure price volatility, or 
interest rate risk. Using the Macaulay duration can derive a measure of a 
bond’s interest rate price sensitivity, i.e., how sensitive a bond’s price is to 
changes in its yield. This measure is obtained by applying a mathematical 
property known as a Taylor expansion to the basic equation. 

The relationship between price volatility and duration can be made 
clearer if the bond price equation, viewed as a function of r, is expanded 
as a Taylor series (see Butler, pp. 112–114 for an accessible explanation of 
Taylor expansions). Using the fi rst term of this series, the relationship can 
be expressed as (2.13).
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where r = the yield to maturity of an annual-coupon-paying bond

As stated above, Macaulay duration equals modifi ed duration multi-
plied by (1+r). The fi rst two components of the right-hand side of (2.13) 
taken together are therefore equivalent to modifi ed duration, and equa-
tion (2.13) expresses the approximate percentage change in price as modi-
fi ed duration multiplied by the change in yield. 

Modifi ed duration is a measure of the approximate change in bond 
price for a 1 percent change in yield. The relationship between modifi ed 
duration and bond prices can therefore be expressed as (2.14). A negative is 
used in this equation because the price movement is inverse to the interest 
rate movement, so a rise in yields produces a fall in price, and vice versa.

 ∆ ∆P D r P= − ×( )×mod  (2.14)

The example on the following page illustrates how the relationships 
expressed in these equations work. 

Changes in yield are often expressed in terms of basis points, which 
equal hundredths of a percent. For a bond with a modifi ed duration of 
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3.99, priced at par, an increase in yield of 1 basis point leads to a fall in 
the bond’s price of 
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 or 3.999 cents

In this example, 3.99 cents is the basis point value (BPV) of the bond: 
the change in its price given a 1 basis point change in yield. The general 
formula for deriving the basis point value of a bond is shown in (2.15).

EXAMPLE:  Applying the Duration/Price Relationships to a 
Hypothetical Bond

Coupon 8 percent, paid annually
Price par 
Duration 2.74 years  

If yields rise from 8 percent to 8.50 percent, the fall in the 
price of the bond can be computed as follows: 
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1

−−$1.2685

That is, the price of the bond will fall to $98.7315.
The modifi ed duration of a bond with a duration of 2.74 years 

and a yield of 8 percent is

Dmod
.
.

.= =
2 74
1 08

2 537 years

If a bond has a duration of 4.31 years and a modifi ed dura-
tion of 3.99, a 1 percent move in the yield to maturity produces 
a move (in the opposite direction) in the price of approximately 
3.99 percent. 
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BPV D P

= ×mod
100 100 (2.15)

Basis point values are used in hedging bond positions. Hedging is done 
by taking an opposite position—that is, one that will rise in value under 
the same conditions that will cause the hedged position to fall, and vice 
versa. Say you hold a 10-year bond. You might wish to sell short a similar 
10-year bond as a hedge against your long position. Similarly, if you hold 
a short position in a bond, you might hedge it by buying an equivalent 
amount of a hedging instrument. A variety of hedging instruments are 
available, for use both on- and off-balance sheet. 

For a hedge to be effective, the price change in the primary instru-
ment should be equal to the price change in the hedging instrument. To 
calculate how much of a hedging instrument is required to get this type of 
protection, each bond’s BPV is used. This is important because different 
bonds have different BPVs. To hedge a long position in, say, $1 million 
nominal of a 30-year bond, therefore, you can’t simply sell $1 million of 

EXAMPLE:  Calculating Hedge Size Using Basis Point Value

Say a trader holds a long position of $1 million of the 8 per-
cent bond maturing in 2019. The bond’s modifi ed duration is 
11.14692, and its price is $129.87596. Its basis point value 
is therefore 0.14477. The trader decides to protect the position 
against a rise in interest rates by hedging it using the zero-coupon 
bond maturing in 2009, which has a BPV of 0.05549. Assuming 
that the yield beta is 1, what nominal value of the zero-coupon 
bond must the trader sell?

The hedge ratio is

0 14477
0 05549

1 2 60894
.
.

.× =

To hedge $1 million of the 20-year bond, therefore, the trader 
must sell short $2,608,940 of the zero-coupon bond. Using the 
two bonds’ BPVs, the loss in the long position produced by a 
1 basis point rise in yield is approximately equal to the gain in the 
hedge position.
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another 30-year bond. There may not be another 30-year bond with the 
same BPV available. You might have to hedge with a 10-year bond. To 
calculate how much nominal of the hedging bond is required, you’d use 
the hedge ratio (2.16).

 
BPV
BPV

p

h
×

Change in yield for primary bond position
Change inn yield for hedge instrument  (2.16)

where
BPVp = the basis point value of the primary bond (the position to be 

hedged)
BPVh = the basis point value of the hedging instrument 

The second term in (2.16) is known as the yield beta.
FIGURE 2.1 shows how the price of the 8 percent 2009 bond changes 

for a selection of yields. For a 1 basis point change in yield, the change 
in price, indicated as “price duration for 1 basis point,” though not com-
pletely accurate because it is a straight line or linear approximation of 
a non-linear relationship, as illustrated with fi gure 1.5 of the price/yield 
relationship, is a reasonable estimate of the actual change in price. For a 
large move—say, 200 basis points—the approximation would be signifi -
cantly off base, and analysts would accordingly not use it. This is shown 
in FIGURE 2.2.

Note that the price duration fi gure, calculated from the modifi ed dura-
tion measurement, underestimates the change in price resulting from a fall 
in yields but overestimates the change from a rise in yields. This refl ects 
the convexity of the bond’s price-yield relationship, a concept that will be 
explained in the next section.

FIGURE 2.1  The Modified Duration Approximation of 
Bond Price Change at Different Yields

     PRICE
     DURATION
    MATURITY MODIFIED OF 1 BASIS
   BOND (YEARS) DURATION POINT 6.00% 6.50% 7.00% 

8% 2009         10 6.76695 0.06936 114.72017 110.78325 107.02358 
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Convexity
Duration is a fi rst-order measure of interest rate risk, using fi rst-order 
derivatives. If the relationship between price and yield is plotted on a 
graph, it forms a curve. Duration indicates the slope of the tangent at any 
point on this curve. A tangent, however, is a line and, as such, is only an 
approximation of the actual curve—an approximation that becomes less 
accurate the farther the bond yield moves from the original point. The 
magnitude of the error, moreover, depends on the curvature, or convexity, 
of the curve. This is a serious drawback, and one that applies to modifi ed 
as well as to Macaulay duration. 

Convexity represents an attempt to remedy the drawbacks of du-
ration. A second-order measure of interest rate risk uses second-order 
derivatives. It measures the curvature of the price-yield graph and the 
degree to which this diverges from the straight-line estimation. Convex-

7.50% 7.99% 8.00% 8.01% 8.50% 9.00% 10.00%

103.43204 100.0671311 100.00000 99.932929 96.71933 93.58234 87.71087 

FIGURE 2.2  Approximation of the Bond Price Change 
Using Modified Duration

     ESTIMATE USING 
  YIELD CHANGE PRICE CHANGE PRICE DURATION 

Down 1 bp 0.06713 0.06936

Up 1 bp 0.06707 0.06936

Down 200 bp 14.72017 13.872

Up 200 bp 12.28913 13.872
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ity can thus be regarded as an indication of the error made when using 
Macaulay and modifi ed duration. A bond’s convexity is positively corre-
lated to the dispersion of its cash fl ows: all else being equal, a bond whose 
cash fl ows are more spread out in time—that is, more dispersed—than 
another’s will have a higher convexity. Convexity is also positively cor-
related with duration.

The second-order differential of the bond price equation with respect 
to the redemption yield r is
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where CV = the convexity

Equation (2.17) shows that convexity is the rate at which price sensitiv-
ity to yield changes as yield changes. That is, it describes how much a bond’s 
modifi ed duration changes in response to changes in yield. Formula (2.18) 
expresses this relationship formally. The convexity term can be seen as an 
“adjustment” for the error made by duration in approximating the price-
yield curve. 
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where
∆P ’ = the change in bond price if yield increases by 1 basis point 
∆P ’’ = the change in bond price if yield decreases by 1 basis point 

The unit in which convexity, as defi ned by (2.18), is measured is the 
number of interest periods. For annual-coupon bonds, this is equal to the 
number of years; for bonds with different coupon-payment schedules, 
formula (2.19) can be used to convert the convexity measure from interest 
periods to years.

 CV CV
Cyears = 2   (2.19)

The convexity formula for zero-coupon bonds is (2.20).
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Convexity is a second-order approximation of the change in price 
resulting from a change in yield. This relationship is expressed formally 
in (2.21).

 ∆ ∆P CV r= × ×( )1
2

2 (2.21)

The reason the convexity term is multiplied by one-half is because the 
second term in the Taylor expansion used to derive the convexity equation 
contains the coeffi cient 0.5. The formula is the same for a semiannual-
coupon bond.

Note that the value for convexity given by the expressions above will 
always be positive—that is, the approximate price change due to convexity 
is positive for both yield increases and decreases, except for certain bonds 
such as callable bonds. 

As noted earlier, the price change estimated using modifi ed duration 
can be quite inaccurate; the convexity measure is the approximation of the 
size of the inaccuracy. Summing the two values—the price-change esti-
mate using modifi ed duration plus the convexity error adjustment—gives 
a more accurate picture of the actual magnitude of the price change. The 
estimated and adjusted values differ signifi cantly, however, only when the 
change in yield is very large. In the example below, the modifi ed duration 
of the hypothetical 5 percent 2015 bond is 7.64498. For the specifi ed rise 

EXAMPLE: Calculating the Convexity of a Bond

Coupon 5 percent, paid annually
Maturity 2015, ten years from present
Price $96.23119
Yield  5.50 percent

If the yield rises to 7.50 percent, a change of 200 basis points, 
the convexity adjustment that would be made to the price change 
calculated using modifi ed duration and equation (2.21) is

0 5 96 23119 0 02 100 1 924622. . . .( )× ×( ) × =  percent

If the yield fell by 200 basis points, the convexity effect would 
be the same.
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in yield of 200 basis points, the approximate price change given by modi-
fi ed duration is

 Modified duration= -7.64498 2= -15.28996×

Note that the modifi ed duration is given as a negative value, because a 
rise in yields results in a fall in price. Adjusting the estimate by the convex-
ity of 1.92462 derived above results in a net percentage price change of 
13.36534. A Hewlett-Packard (HP) calculator gives the price of the bond 
at the new yield of 7.50 percent as $82.83980, representing an actual 
change of 13.92 percent. So using the convexity adjustment produces a 
noticeably more accurate estimate.

Now assume that yields fall just 1.50 percent, or 150 basis points. The 
new convexity value is

 0 5 96 23119 0 015 100 1 08262. . . .( )× ×( ) × =  percent

And the price change estimate based on modifi ed duration is

 Modified duration=7.64498 1.5=11.46747×

Adding the two values together results in an adjusted price change 
estimate of 12.55007 percent. The actual price change according to the 
HP calculator is 10.98843 percent. In this case, the unadjusted modifi ed 
duration estimate is closer. This illustrates that the convexity measure is 
effective for larger yield changes only. The example at right provides an 
illustration of the greater accuracy produced by combining the modifi ed 
duration and convexity measures for larger yield shifts.

The convexity measure increases with the square of maturity; it 
decreases as both coupon and yield rise. It is a function of modifi ed 
duration, so index-linked bonds, which have greater duration than con-
ventional bonds of similar maturities, also have greater convexity. For a 
conventional vanilla bond, convexity is almost always positive. Negative 
convexity occurs most frequently with callable bonds. 

In principle, a bond with greater convexity should fall in price less 
when yields rise than a less-convex one, and rise in price more when 
yields fall. This is true because convexity is usually positive, so it lessens 
the price decline produced by rises in yield and increases the price rise 
produced by falls in yield. Thus, all else being equal, the higher the 
convexity of a bond the more desirable it should be to investors. The 
actual premium attached to higher convexity is a function of current 
yield levels and market volatility. Remember that modifi ed duration and 
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convexity are both functions of yield level, and their effects are mag-
nifi ed at lower yield levels. In addition, the cash effect of convexity is 
more noticeable for large moves in yield. So the value investors attach to 
convexity will vary according to their expectations about the future size 
of interest rate changes. Hence, convexity is more highly valued when 
market volatility is high. 

EXAMPLE: Convexity Adjustment

Assume that the yield of the hypothetical 5 percent 2015 bond 
rises to 8.50 percent, a change of 300 basis points. The percent-
age convexity adjustment is 

0 5 96 23119 0 03 100 4 33042. . . .× ×( ) × =  percent

The modifi ed duration of the bond at the initial yield, as seen 
above, is 7.64498. So the price change estimate using modifi ed 
duration is

7 64498 3 0. .× = −22.93494

Adjusting this by the convexity value derived above results in 
a price change of 18.60454 percent. Using an HP calculator, the 
price of the bond is 77.03528, for an actual percentage price 
change of 19.9477 percent. In this case, the adjusted estimate is 
closer than that obtained using only the modifi ed duration measure. 
The continuing error refl ects the fact that convexity is a dynamic 
measure and changes with yield changes; the effect of a large yield 
movement compounds the inaccuracy of the adjustments.
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C H A P T E R  3

Bond Pricing and 
Spot and Forward Rates

As discussed in chapter 1, there are two types of fi xed-income secu-
rities: zero-coupon bonds, also known as discount bonds or strips, 
and coupon bonds. A zero-coupon bond makes a single payment 

on its maturity date, while a coupon bond makes interest payments at 
regular dates up to and including its maturity date. A coupon bond may 
be regarded as a set of strips, with the payment on each coupon date and at 
maturity being equivalent to a zero-coupon bond maturing on that date. 
This equivalence is not purely academic. Before the advent of the formal 
market in U.S. Treasury strips, a number of investment banks traded the 
cash fl ows of Treasury securities as separate zero-coupon securities. 

The discussion in this chapter assumes a liquid market of default-free 
bonds, where both zero-coupon and coupon bonds are freely bought and 
sold. Prices are determined by the economy-wide supply of and demand 
for the bonds at any time. The prices are thus macroeconomic, rather than 
being set by individual bond issuers or traders. 

Zero-Coupon Bonds
A zero-coupon bond is the simplest fi xed-income security. It makes no 
coupon payments during its lifetime. Instead, it is a discount instrument, 
issued at a price that is below the face, or principal, amount. The rate 
earned on a zero-coupon bond is also referred to as the spot interest rate. 
The notation P(t, T ) denotes the price at time t of a discount bond that 
matures at time T, where T t≥ . The bond’s term to maturity, T – t, is 
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denoted by n. The strip’s price increases over time until the maturity date, 
when it reaches maturity, or par, value. If the par value of a bond is $1, 
then its yield to maturity at time t is denoted by r t T,( ) , where r is “1 plus 
the percentage yield” that is earned by holding the bond from t to T. The 
relationship between the zero-coupon bond’s price and its yield to matu-
rity at any point in its life may be expressed as equation (3.1).

 
P t T

r t T n,
,

( ) =
( )⎡⎣ ⎤⎦

1
 (3.1)

This equation can be rearranged as (3.2) to derive a bond’s yield for a 
given price.
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1
1

1

 (3.2)

Analysts and researchers frequently work with logarithms of yields and 
prices, or continuously compounded rates. One advantage of the logarithmic 
approach is that it converts the nonlinear relationship expressed in (3.2) into 
a linear one. The zero-coupon bond price equation in continuous time is

 P t T e r t T T t, ,( ) = − ( ) −( )  (3.3)

The price equation for a specifi c time t2, where t t T≤ ≤2 , is

 P t T P t T e t t r t T2
2, , ,( ) = ( ) −( ) ( )

 (3.4)

Note that expression (3.4) contains an exponential function; this is 
why the rate is characterized as continuously compounded. Yield in con-
tinuous time is given by (3.5).

 
r t T

P t T
n

, log
,

( ) = −
( )⎛

⎝
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⎞

⎠
⎟⎟⎟⎟  (3.5)

This is sometimes written as (3.6).

 log , log ,r t T
n

P t T( ) = −
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ ( )

1
 (3.6)

The term structure of interest rates is the set of zero-coupon yields at 
time t for terms t t, +( )1  to t t m, +( ) , where the bonds have maturities of 
0 1 2, , ,.....,m{ }. The term structure of interest rates thus describes the relation-
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FIGURE 3.1   U.S. Treasury Zero-Coupon Yield Curve in 
September 2000
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ship between the spot interest rates of credit-risk–free zero-coupon bonds 
and their maturities.

The yield curve is a graph plotting the set of yields r t t, +( )1  through 
r t t m, +( ) at time t against m. FIGURES 3.1, 3.2, and 3.3 (above and on 
the following page) show the log zero-coupon yield curves, as of Septem-
ber 27, 2000, for, respectively, U.S. Treasury strips, U.K. gilt strips, and 
French OAT (Obligations Assimilable du Trésor) strips. The French curve 
exhibits the most common shape for yield curves: a gentle upward slope. 
The U.K. curve slopes in the opposite direction, a shape termed inverted. 

Coupon Bonds
The majority of bonds in the market are coupon bonds. As noted above, 
such bonds may be viewed as packages of individual strips. The strips 
corresponding to the coupon payments have face values that equal per-
centages of the nominal value of the bond itself, with successively longer 
maturity dates; the strip corresponding to the fi nal redemption payment 
has the face value and maturity date of the bond. 

A bond issued at time i and maturing at time T makes w payments (C1 
… Cw) on w payment dates (t1, … tw-1, T ). In the academic literature, these 
coupon payments are assumed to be continuous, rather than periodic, so 
the stream of coupon payments can be represented formally as a positive 
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FIGURE 3.3   French OAT Zero-Coupon Yield Curve in 
September 2000
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FIGURE 3.2   U.K. Gilt Zero-Coupon Yield Curve in 
September 2000
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function of time: C t i t T( ) < ≤, . Investors purchasing a bond at time t that 
matures at time T pay P(t, T ) and receive the coupon payments as long 
as they hold the bond. Note that P(t, T ) is the clean price of the bond, as 
defi ned in chapter 1; in practice, unless the bond is purchased for settle-
ment on a coupon date, the investor will pay a dirty price, which includes 
the value of the interest that has accrued since the last coupon date.

As discussed in chapter 1, yield to maturity is the interest rate that relates 
a bond’s price to its future returns. More precisely, using the notation de-
fi ned above, it is the rate that discounts the bond’s cash fl ow stream Cw to its 
price P(t, T ). This relationship is expressed formally in equation (3.7).

 
P t T C ei

t t r t T

t t

i

i

, ,( ) = − −( ) ( )

>
∑

 (3.7)

Expression (3.7) allows the continuously compounded yield to ma-
turity r(t, T ) to be derived. For a zero-coupon, it reduces to (3.5). In the 
academic literature, ∑, which is used in mathematics to calculate sums of 
a countable number of objects, is replaced by ∫ , the integral sign, which 
is used for an infi nite number of objects. (See Neftci (2000), pages 59–66, 
for an introduction to integrals and their use in quantitative fi nance.) 

Some texts refer to the graph of coupon-bond yields plotted against ma-
turities as the term structure of interest rates. It is generally accepted, however, 
that this phrase should be used for zero-coupon rates only and that the graph 
of coupon-bond yields should be referred to instead as the yield curve. Of 
course, given the law of one price—which holds that two bonds having the 
same cash fl ows should have the same values—the zero-coupon term struc-
ture is related to the yield to maturity curve and can be derived from it.

Bond Price in Continuous Time
This section is an introduction to bond pricing in continuous time. Chap-
ter 4 presents a background on price processes.

Fundamental Concepts 
Consider a trading environment in which bond prices evolve in a w-
dimensional process, represented in (3.8).

 X t X t X t X t X t tw( ) = ( ) ( ) ( ) ( )[ ] >1 2 3 0, , ,....., ,  (3.8)

where the random variables (variables whose possible values are numerical 
outcomes of a random process) Xi are state variables, representing the state 
of the economy at times ti
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The markets assume that the state variables evolve through a geomet-
ric Brownian motion, or Weiner process. It is therefore possible to model 
their evolution using a stochastic differential equation. The market also 
assumes that the cash fl ow stream of assets such as bonds and equities is a 
function of the state variables. 

A bond is characterized by its coupon process, represented in (3.9).

 C t C X t X t X t X t tw( ) = ( ) ( ) ( ) ( )[ ]
~

, , ,....., ,1 2 3  (3.9)

The coupon process represents the cash fl ow investors receive while 
they hold the bond. Assume that a bond’s term can be divided into very 
small intervals of length dt and that it is possible to buy very short-term 
discount bonds, such as Treasury strips, maturing at the end of each 
such interval and paying an annualized rate r (t). This rate is the short, or 
instantaneous, rate, which in mathematical bond analysis is defi ned as the 
rate of interest charged on a loan taken out at time t that matures almost 
immediately. The short rate is given by formulas (3.10) and (3.11).

 r t r t t( ) = ( ),  (3.10)

The short rate is the interest rate on a loan that is paid back almost 
instantaneously; it is a theoretical construct. Equation (3.11) states this 
mathematical notation in terms of the bond price.

 r t
T

P t t( ) = −
∂
∂

( )log ,  (3.11)

If the principal of the short-term security described above is continu-
ously reinvested at this short rate, the cumulative amount obtained at time 
t is equal to the original investment multiplied by expression (3.12). 

 M t r s ds
t

( ) = ( )
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥∫exp

0

 (3.12)

where M is a money market account that offers a return of the short rate 
r (t). The bond principal is multiplied by an account and M(t) is the total 
rate of return of such an account.

If the short rate is constant—that is, r (t) = r—then the price of a 
risk-free bond that pays $1 on its maturity date T is given by expres-
sion (3.13).

 P t T e r T t,( ) = − −( ) (3.13) 
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Expression (3.13) states that the bond price is a function of the con-
tinuously compounded interest rate. The right-hand side is the discount 
factor at time t. At t = T—that is, on the redemption date—the discount 
factor is 1, which is the redemption value of the bond and hence the price 
of the bond at that time. 

Consider a scenario in which a market participant can either 
❑  invest e r T t− −( ) units of cash in a money market account, for a return 

of $1 at time T, or
❑  purchase a risk-free zero-coupon bond that has a maturity value of 

$1 at time T

The bond and the money market are both risk-free and have identical 
payouts at time T, and neither will generate any cash fl ow between now 
and time T. Since the interest rates involved are constant, the bond must 
have a value equal to the initial investment in the money market account: 
et
r T t− −( ). In other words, equation (3.13) must hold. This is a restriction 

placed on the zero-coupon bond price by the requirement for markets to 
be arbitrage-free.

If the bond were not priced at this level, arbitrage opportunities would 
present themselves. Say the bond was priced higher than et

r T t− −( ). In this 
case, investors could sell the bond short and invest et–r (T-t) of the sale 
proceeds in the money market account. At time T, the short position 
would have a value of –$1 (negative, because the bond position is short); 
the money market, meanwhile, would have grown to $1, which the inves-
tors could use to close their short bond positions. And they would still 
have funds left over from the short sale, because at time t

 P t T e r T t,( )− >− −( ) 0

So they would profi t from the transaction at no risk to themselves.
A similar situation obtains if the bond price P(t, T ) is less than et

r T t− −( ).
In that case, the investors borrow et

r T t− −( ) at the money market rate. They 
then use P(t, T ) of this loan to buy the strip. At maturity the bond pays 
$1, which the investors use to repay the loan. But they still have surplus 
borrowed funds, because

 e P t Tr T t− −( ) − ( ) >, 0

This demonstrates that the only situation in which no arbitrage profi t 
can be made is when P t T e r T t,( ) = − −( ). (For texts providing more detail on 
arbitrage pricing theory, see the References section.)
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In the academic literature, the risk-neutral price of a zero-coupon 
bond is expressed in terms of the evolution of the short-term interest rate, 
r (t)—the rate earned on a money market account or on a short-dated 
risk-free security such as the T-bill—which is assumed to be continuously 
compounded. These assumptions make the mathematical treatment sim-
pler. Consider a zero-coupon bond that makes one payment, of $1, on its 
maturity date T. Its value at time t is given by equation (3.14), which is the 
redemption value of 1 divided by the value of the money market account, 
given by (3.12).

 P t T r s ds
t

T
, exp( ) = − ( )

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥∫  (3.14)

The price of a zero-coupon bond in terms of its yield is given by equa-
tion (3.15).

 P t T T t r T t, exp( ) = − −( ) −( )⎡⎣ ⎤⎦  (3.15)

Expression (3.14) is the formula for pricing zero-coupon bonds 
when the spot rate is the nonconstant instantaneous risk-free rate r (s) 
described above. This is the rate used in formulas (3.12), for valuing a 
money market account, and (3.15), for pricing a risk-free zero-coupon 
bond. 

Stochastic Rates 
In the academic literature, the bond price given by equation (3.15) evolves 
as a martingale process under the risk-neutral probability measure �P. This 
process is the province of advanced fi xed-income mathematics and lies 
outside the scope of this book. An introduction, however, is presented in 
chapter 4, which can be supplemented by the readings listed in the Refer-
ences section.

Advanced fi nancial analysis produces the bond price formula (3.16) 
(for the formula’s derivation, see Neftci (2000), page 417). 
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− ( )∫�  (3.16)

The right-hand side of (3.16) is the randomly evolved discount factor 
used to obtain the present value of the $1 maturity payment. The expres-
sion states that bond prices are dependent on the entire spectrum of short-
term interest rates r(s) during the period t < s < T. It also implies, given 
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the view that the short rate evolves as a martingale process, that the term 
structure at time t contains all the information available on future short 
rates. From (3.16) the discount curve, or discount function, at time t can be 
derived as T P t Tt

T→ <, . In other words, (3.16) states that the price of the 
bond is the continuously compounded interest rate as applied to the zero-
coupon bond from issue date t to maturity T. The complete set of bond 
prices assuming a nominal value of $1 is the discount function. Avellaneda 
(2000) notes that the bond analysts usually replace the term T with a term 
(T – t ), meaning time to maturity, so the function becomes

 τ ττ→ >+Pt
t , 0, where τ = −( )T t

The relationship between the yield r (t, T ) of the zero-coupon bond 
and the short rate r (t) can be expressed by equating the right-hand sides 
of equations (3.16) and (3.3) (the formula for deriving the zero-coupon 
bond price, repeated here as (3.17)). The result is (3.18).

 P t T e r t T T t, ,( ) = − ( ) −( )  (3.17)
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Taking the logarithm of both sides gives (3.19).
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 (3.19)

Equation (3.19) describes a bond’s yield as the average of the spot 
rates that apply during the bond’s life. If the spot rate is constant, the 
yield equals it.

For a zero-coupon bond, assuming that interest rates are positive, 
P(t, T ) is less than or equal to 1. The yield of this bond is given by 
(3.20).

 
r t T

P t T
T t

,
log ,

( ) = −
( )( )
−  (3.20)

Rearranging (3.20) to solve for price results in (3.21).

 P t T e T t r T t,( ) = − −( ) −( )  (3.21)
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In practice, this equation means that investors will earn r (t, T ) if they 
purchase the bond at t and hold it to maturity.

Coupon Bonds
The price of coupon bonds can also be derived in terms of a risk-neutral 
probability measure of the evolution of interest rates. The formula for this 
derivation is (3.22).
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where
Pc = the price of a coupon bond
C = the bond coupon
tn = the coupon payment dates, with n N≤ , and t = 0 at the time of 

valuation 
w = the coupon frequency (annual or semiannual for plain vanilla 

bonds; monthly for certain fl oating-rate notes and asset-backed securities), 
expressed in number of times per year 

T = the maturity date  

Note that “100” on the right-hand side captures the fact that prices are 
quoted per 100 of the bond’s principal, or nominal, value. 

Expression (3.22) is written in some texts as (3.23).
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N
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 (3.23)

Expression (3.22) can be simplifi ed by substituting Df for the part of 
the expression representing the discount factor. Assuming an annual cou-
pon, the result is (3.24).
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Expression (3.24) states that the market value of a risk-free bond on 
any date is determined by the discount function on that date. 
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Forward Rates
An investor can combine positions in bonds of differing maturities to 
guarantee a rate of return that begins at a point in the future. The trade 
ticket is written at time t to cover the period T to T + 1 where t < T. 
The interest rate earned during this period is known as a forward rate. 
The mechanism by which a forward rate is guaranteed is described below, 
following Campbell et al (1997) and Jarrow (1996). 

Guaranteeing a Forward Rate
Say an investor at time t simultaneously buys one unit of a zero-coupon 
bond maturing at time T that is priced at P(t, T ) and sells P(t, T )/P(t, T + 
1) units of zero-coupon bonds maturing at T + 1. Together these two trans-
actions generate a zero cash fl ow: The investor receives a cash fl ow equal to 
one unit at time T and pays out P(t, T )/P (t, T + 1) at time T+ 1. These cash 
fl ows are identical to those that would be generated by a loan contracted at 
time t for the period T to T + 1 at an interest rate of P (t, T )/P (t, T + 1). 
Therefore P (t, T )/P(t, T + 1) is the forward rate. This is expressed formally 
in (3.25).

 
f t T

P t T
P t T

,
,

,
( ) =

( )
+( )1  (3.25)

Using the relationships between bond price and yield described earlier, 
(3.25) can be rewritten in terms of yield as shown in (3.26), which repre-
sents the rate of return earned during the forward period (T, T + 1). This 
is illustrated in FIGURE 3.4.

FIGURE 3.4  Forward Rate Mechanics

  TIME

Transactions                       t T         T+1

Buy 1 unit of T-period bond                  –P (t,T ) +1

Sell P (t,T )/P (t, T+1)  +[(P (t,T )/P (t, T+1)]P   m (t, T+1)  –P (t,T )/P (t, T+1)
    T+1 period bonds

Net cash fl ows                       0 +1 –P (t,T )/P (t, T+1)
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Expression (3.25) can be rewritten as (3.27), which solves for bond 
price in terms of the forward rates from t to T. (See Jarrow (1996), chapter 
3, for a description of this derivation.)
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Equation (3.27) states that the price of a zero-coupon bond is equal to 
the nominal value, here assumed to be 1, receivable at time T, after it has 
been discounted by the set of forward rates that apply from t to T. 

Calculating a forward rate is equivalent to estimating what interest rate 
will be applicable for a loan beginning at some point in the future. This 
process exploits the law of one price, or no arbitrage. Consider a loan that 
begins at time T and matures at T + 1. The process of calculating the rate 
for that loan is similar to the one described above. Start with the simul-
taneous purchase at time t of one unit of a bond with a term of T + 1 for 
price P (t, T+1) and sale of p amount of a bond with a term of T for price 
P (t, T ). The net cash position at t must be zero, so p must be

 
p
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+( )
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,

,
1

To preclude arbitrage opportunities, the value of p amount of one 
bond price divided by another must be the price of the T + 1–term bond 
at time T. Therefore the forward yield for the period T to T + 1 is given 
by expression (3.28). 
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If the period between T and the maturity of the longer-term bond is 
progressively reduced, the result is an instantaneous forward rate, which is 
given by formula (3.29).
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This is the price today of borrowing at time T. When T = t, the forward 
rate is equal to the instantaneous short rate r (t); in other words, the spot 
and forward rates for the period (t, t) are identical. For other terms, the 
forward-rate yield curve will lie above the spot-rate curve if the spot curve 
is positively sloping; below it, if the spot-rate curve is inverted. Campbell 
et al (1997, pages 400–401) observes that this is a standard property for 
marginal and average cost curves. That is, when the cost of a marginal 
unit (say, of production) is above that of an average unit, the addition of a 
marginal unit increases the average cost. Conversely, the average cost per 
unit decreases if the marginal cost is below the average cost.

The Spot and Forward Yield Curve
From the preceding discussion of the relationships among bond prices, 
spot rates, and forward rates, it is clear, given any one of these sets, that it 
is possible to calculate the other two. As an illustration, consider the set of 
zero-coupon rates listed in FIGURE 3.5, which are assumed to be observed 
in the market. From these fi gures, the corresponding forward rates and 
zero-coupon bond prices may be calculated. FIGURES 3.6 and 3.7 show 
the two derived curves plotted against the curve defi ned by the observed 
zero-coupon rates. 

Note that the zero-coupon–yield curve has a positive, upward slope. 
The forward-rate curve should, therefore, lie above it, as discussed earlier. 
This is true until the later maturities, when the forward curve develops a 
serious kink. A full explanation for why this occurs lies outside the scope 
of this book. In simplest terms, though, it boils down to this: the forward 
rate, or marginal rate of return, is equal to the spot rate, or average rate of 
return, plus the rate of increase in the spot rate multiplied by the sum of 
the increases between t and T. If the spot rate is constant (corresponding 
to a fl at curve), the forward-rate curve will equal it. An increasing spot-rate 
curve, however, does not always generate an increasing forward curve, only 
one that lies above it; it is possible for the forward curve to be increasing 
or decreasing while the spot rate is increasing. If the spot rate reaches a 
maximum level and then levels off or falls, the forward curve will begin 
to decrease at a maturity point earlier than the spot curve high point. In 
fi gure 3.6 the rate of increase in the spot rate in the last period is magni-
fi ed when converted to the equivalent forward rate; if the last spot rate had 
been below the previous-period rate, the forward-rate curve would look 
like that in fi gure 3.7.
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Calculating Spot Rates 
It has been noted that a coupon bond may be regarded as a portfolio of 
zero-coupon bonds. An implied zero-coupon interest rate structure can 
therefore be derived from the yields on coupon bonds.

If the actual prices P1, P2, ….., PN of zero-coupon bonds with different 
maturities and $1 nominal values are known, then the price PC of a coupon 
bond of nominal value $1 and coupon C can be derived using (3.30).

 P PC PC P CC N= + + + +( )1 2 1.....  (3.30)

Conversely if the coupon bond prices PC1, PC2 ,….., PCN are known, 
the implied zero-coupon term structure can be derived through an itera-
tive process using the relationship formalized in (3.30), as shown in (3.31) 
and (3.32).

 

FIGURE 3.5  Hypothetical Zero-Coupon Yield and Forward Rates

   TERM TO SPOT RATE r FORWARD RATE f BOND PRICE P
   MATURITY (0, T ) (O, T )* (0, T )* (0, T )

0   1

1 1.054 1.054 0.94877

2 1.055 1.056 0.89845

3 1.0563 1.059 0.8484

4 1.0582 1.064 0.79737

5 1.0602 1.068 0.7466

6 1.0628 1.076 0.69386

7 1.06553 1.082 0.64128

8 1.06856 1.0901 0.58833

9 1.07168 1.0972 0.53631

10 1.07526 1.1001 0.48403

11 1.07929 1.1205 0.43198

*Interest rates are given as (1 + r )
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FIGURE 3.6   Hypothetical Zero-Coupon and Forward Yield 
Curves
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FIGURE 3.7   Hypothetical Spot and Forward Yield Curves
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and so on, for prices P1, P2, ....., PN-1 (3.31)
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Finally, a regression technique known as ordinary least squares, or OLS 
(discussed in chapter 5), is applied to fi t the term structure. Expression (3.30) 
restricts coupon-bond prices by requiring them to be precise functions of the 
prices of other coupon bonds. In practice, this strict relationship is vitiated by 
the effects of liquidity, taxes, and other factors. For this reason an error term 
u is added to (3.30), and the price is estimated using cross-sectional regression 
against all the other bonds in the market, as shown in (3.33).

 P PC PC P C uC N i i N i ii i i
= + + + +( )+1 2 1.....  (3.33)

where i I= 1 2, ,....,
Ci = the coupon on the ith bond 
Ni = the maturity of the ith bond 

In (3.33) the regressor parameters are the coupons paid on each 
coupon-payment date, and the coeffi cients are the prices of the zero-
coupon bonds Pj where j = 1, 2, … , N. The values are obtained using OLS 
as long as the term structure is complete and I N≥ .

In practice, the term structure of coupon bonds is not complete, so 
the coeffi cients in (3.33) cannot be identifi ed. To address this problem, 
McCulloch (1971, 1975) prescribes a spline estimation method that 
assumes zero-coupon bond prices vary smoothly with term to maturity. 
This approach defi nes price as a discount function of maturity, P(N ), 
which is a given by (3.34).

 
P N a f Nj j

j

J

( ) = + ( )
=
∑1

1  (3.34)

The function f j (N ) is a known function of maturity N, and the coeffi -
cients aj must be estimated. A regression equation is created by substituting 
(3.34) into (3.33) to give (3.35), whose value can be estimated using OLS
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The function f j (N ) is usually specifi ed by setting the discount function 
as a polynomial. In certain texts, including McCulloch, this is done by ap-
plying a spline function, which is discussed in the next chapter. (For further 
information, see the References section, particularly Suits et al (1978).) 

Term Structure Hypotheses
As befi ts a subject that has been extensively researched, the term structure 
of interest rates has given rise to a number of hypotheses about how matu-
rity terms are related to spot and forward rates and why it assumes certain 
shapes. This section briefl y reviews the hypotheses.

The Expectations Hypothesis
Simply put, the expectations hypothesis states that the slope of the yield curve 
refl ects the market’s expectations about future interest rates. It was fi rst enunci-
ated in 1896, by Irving Fisher, a Yale economist, and later developed in Hicks 
(1946) and other texts. Shiller (1990) suggests that the hypothesis derives 
from the way market participants’ view on future interest rates informs their 
decisions about whether to purchase long- or short-dated bonds. If interest 
rates are expected to fall, for instance, investors will seek to lock in the current 
high yield by purchasing long-dated bonds. The resultant demand will cause 
the prices of long-dated bonds to rise and their yields to decline. The yields 
will remain low as long as short-dated rates are expected to fall, rising again 
only when the demand for long-term bonds is reduced. Downward-sloping 
yield curves, therefore, indicate that the market expects interest rates to fall, 
while upward-sloping curves refl ect expectations of a rise in short-term rates.

There are four distinct and incompatible versions of the expectations 
hypothesis. The unbiased version states that current forward rates are un-
biased predictors of future spot rates. Let f T Tt , +( )1  be the forward rate at 
time t for the period from T to T + 1 and rT be the one-period spot rate at 
time T. The unbiased expectations hypothesis states that f T Tt , +( )1  is the 
expected value of rT. This relationship is expressed in (3.36).
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 f T T E rt t T, +( ) = [ ]1  (3.36)

The return-to-maturity expectations hypothesis states that the return 
generated by holding a bond for term t to T will equal the expected return 
generated by continually rolling over a bond whose term is a period evenly 
divisible into T – t. This relationship is expressed formally in (3.37).
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The left-hand side of (3.37) represents the return received by an in-
vestor holding a zero-coupon bond to maturity; the right-hand side is 
the expected return from time t to time T generated by rolling over a $1 
investment in one-period maturity bonds, each of which has a yield equal 
to the future spot rate rt. In essence, this version represents an equilibrium 
condition, in which the expected returns for equal holding periods are 
themselves equal, although it does not state that the equality holds for dif-
ferent bond strategies. Jarrow (1996, page 52) argues for this hypothesis 
by noting that in an environment of economic equilibrium, the returns 
on zero-coupon bonds of similar maturity cannot be signifi cantly dif-
ferent, since investors would not hold the bonds with the lower return. 
A similar argument can be made for coupon bonds of differing maturities. 
Any difference in yield would therefore not disappear as equilibrium was 
re-established. There are a number of reasons, however, that investors will 
hold shorter-dated bonds, irrespective of their yields. So it is possible for 
the return-to-maturity version of the hypothesis to be inapplicable. 

From (3.36) and (3.37), it is clear that these two versions of the expec-
tations hypothesis are incompatible unless no correlation exists between 
future interest rates. Ingersoll (1987) notes that although such an economic 
environment would be both possible and interesting to model, it is not 
related to reality, since interest rates are in fact highly correlated. Given a 
positive correlation between rates over a period of time, bonds with terms 
longer than two periods will have higher prices under the unbiased ver-
sion than under the return-to-maturity version. Bonds with maturities of 
exactly two periods will have the same price under both versions.

The yield-to-maturity expectations hypothesis is stated in terms of 
yields, as expressed in equation (3.38).

 
1

1 1 1

1

1 1

1

P t T
E r r r

T t
t t t T

T t

,
.....

( )

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

= +( ) +( ) +( ){ }⎡−
+ −

−

⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥  (3.38)



                         Bond Pricing and Spot and Forward Rates 65

The left-hand side of (3.38) specifi es the yield-to-maturity at time t 
of the zero-coupon bond maturing at time T. The equation states that 
the expected holding-period yield generated by continually rolling over a 
series of one-period bonds will be equal to the yield guaranteed by holding 
a long-dated bond until maturity.

The local expectations hypothesis states that all bonds will generate 
the same expected rate of return if held for a small term. It is expressed 
formally in (3.39).
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This version of the hypothesis is the only one that permits no arbi-
trage, because the expected rates of return on all bonds are equal to the 
risk-free interest rate. For this reason, the local expectations hypothesis is 
sometimes referred to as the risk-neutral expectations hypothesis. 

Liquidity Premium Hypothesis
The liquidity premium hypothesis, which has been described in Hicks 
(1946), builds on the insight that borrowers prefer to borrow long and 
lenders to lend short. It states that current forward rates differ from future 
spot rates by a liquidity premium. This is expressed formally as (3.40).

 f T T E r T Tt t T t, ,+( ) = [ ]+ +( )1 1π  (3.40)

Expression (3.40) states that the forward rate f T Tt , +( )1  is the ex-
pected one-period spot rate at time T, rate given by rT, plus the liquidity 
premium, which is a function of the maturity of the bond (or the term of 
the loan). This premium refl ects the confl icting requirements of borrowers 
and lenders: traders and speculators will borrow short and lend long in an 
effort to earn the premium. 

Segmented Markets Hypothesis
The segmented markets hypothesis, fi rst described in Culbertson (1957), 
seeks to explain the shape of the yield curve. It states that different types of 
market participants, with different requirements, invest in different parts 
of the term structure. For instance, the banking sector needs short-dated 
bonds, while pension funds require longer-term ones. Regulatory reasons 
may also affect preferences for particular maturity investments. 

A variation on this hypothesis is the preferred habitat theory, described 
in Modigliani and Sutch (1967), which states that although investors 
have preferred maturities, they may choose other terms if they receive a 
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premium for so doing. This explains the “humped” shapes of yield curves, 
because if they have preferred maturities they will buy at those dates, 
depressing yields there and creating a hump. Cox, Ingersoll, and Ross 
(1981) describe the preferred habitat theory as a version of the liquidity 
preference hypothesis, where the preferred habitat is the short end of the 
yield curve, so that longer-dated bonds must offer a premium to entice 
investors. 
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C H A P T E R  4

Interest Rate Modeling

Chapter 3 introduced the basic concepts of bond pricing and analy-
sis. This chapter builds on those concepts and reviews the work 
conducted in those fi elds. Term-structure modeling is possibly 

the most heavily covered subject in the fi nancial economics literature. 
A comprehensive summary is outside the scope of this book. This chapter, 
however, attempts to give a solid background that should allow interested 
readers to deepen their understanding by referring to the accessible texts 
listed in the References section. This chapter reviews the best-known 
interest rate models. The following one discusses some of the techniques 
used to fi t a smooth yield curve to market-observed bond yields. 

Basic Concepts
Term-structure modeling is based on theories concerning the behavior of 
interest rates. Such models seek to identify elements or factors that may 
explain the dynamics of interest rates. These factors are random, or sto-
chastic. That means their future levels cannot be predicted with certainty. 
Interest rate models therefore use statistical processes to describe the fac-
tors’ stochastic properties and so arrive at reasonably accurate representa-
tions of interest rate behavior.

The fi rst term-structure models described in the academic literature 
explain interest rate behavior in terms of the dynamics of the short rate. 
This term refers to the interest rate for a period that is infi nitesimally 
small. (Note that spot rate and zero-coupon rate are terms used often to 
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mean the same thing.) The short rate is assumed to follow a statistical 
process, and all other interest rates are functions of the short rate. These 
are known as one-factor models. Two-factor and multifactor interest rate 
models have also been proposed. The model described in Brennan and 
Schwartz (1979), for instance, assumes that both the short rate and a 
long-term rate are the driving forces, while one presented in Fong and 
Vasicek (1991) takes the short rate and short-rate volatility as primary 
factors. 

Short-Rate Processes
The original interest rate models describe the dynamics of the short rate; 
later ones—known as HJM, after Heath, Jarrow, and Morton, who cre-
ated the fi rst whole yield-curve model—focus on the forward rate. 

In a one-factor model of interest rates, the short rate is assumed to 
be a random, or stochastic, variable—that is, it has more than one pos-
sible future value. Random variables are either discrete or continuous. A 
discrete variable moves in identifi able breaks or jumps. For example, 
although time is continuous, the trading hours of an exchange-traded 
future are discrete, since the exchange is shut outside of business hours. 
A continuous variable moves without breaks or jumps. Interest rates 
are treated in academic literature as continuous, although some, such 
as central bank base rates, actually move in discrete steps. An interest 
rate that moves in a range from 5 to 10 percent, assuming any value 
in between—such as 5.671291 percent—is continuous. Assuming that 
interest rates and the processes they follow are continuous, even when 
this does not refl ect market reality, allows analyses to employ calculus to 
derive useful results.

The short rate follows a stochastic process, or probability distribution. 
So, although the rate itself can assume a range of possible future values, the 
process by which it changes from value to value can be modeled. A one-
factor model of interest rates specifi es the stochastic process that describes 
the movement of the short rate. 

The analysis of stochastic processes employs mathematical tech-
niques originally used in physics. An instantaneous change in value of a 
random variable x is denoted by dx. Changes in the random variable as-
sume to follow a normal distribution, that is, the bell-shaped curve dis-
tribution. The shock, or noise, that impels a random variable to change 
value follows a randomly generated Weiner process, also known as a 
geometric Brownian motion. A variable following a Weiner process is a 
random variable, denoted by x or z, whose value alters instantaneously 
but whose patterns of change follow a normal distribution with mean 0 
and standard deviation 1. Consider the zero-coupon bond yield r. Equa-
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tion (4.1) states that r follows a continuous Weiner process with mean 0 
and standard deviation 1.

 dr dz=  (4.1)

Changes or jumps in yield that follow a Weiner process are scaled by the 
volatility of the stochastic process that drives interest rates, which is denoted 
by σ. The stochastic process for change in yields is expressed by (4.2).

 dr dz= σ  (4.2)

The value of the volatility parameter is user-specifi ed—that is, it is set 
at a value that the user feels most accurately describes the current interest 
rate environment. The value used is often the volatility implied by the 
market price of interest rate derivatives such as caps and fl oors.

The zero-coupon bond yield has thus far been described as a sto-
chastic process following a geometric Brownian motion that drifts with 
no discernible trend. This description is incomplete. It implies that the 
yield will either rise or fall continuously to infi nity, which is clearly not 
true in practice. To be more realistic, the model needs to include a term 
capturing the fact that interest rates move up and down in a cycle. The 
short rate’s expected direction of change is the second parameter in an 
interest rate model. This is denoted in some texts by a letter such as a 
or b, in others by µ. The short-rate process can therefore be described as 
function (4.3).

 dr adt dz= + σ  (4.3)

where
dr = the change in the short rate
a = the expected direction of the change, or drift
dt = the incremental change in time
σ = the standard deviation of the price movements 
dz = the random process

Equation (4.3), which is sometimes written with dW or dx in place 
of dz, is similar to the models fi rst described in Vasicek (1977), Ho and 
Lee (1986), and Hull and White (1991). It assumes that, on average, the 
instantaneous change in interest rates is given by the function adt, with 
random shocks specifi ed by σdz.

Because this process is a geometric Brownian motion, it has two im-
portant properties. First, the drift rate is equal to the expected change in 
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the short rate; if the drift rate is zero, the expected change is also zero, and 
the expected level of the short rate is equal to its current level. Second, the 
variance—that is, the square of the standard deviation—of the change 
in the short rate over a period T is equal to T, and its standard deviation 
is T .

Equation (4.3) describes a stochastic short-rate process modifi ed to 
include the direction of change. To be more realistic, it should also include 
a term describing the tendency of interest rates to drift back to their long-
run average level. This process is known as mean reversion and is perhaps 
best captured in the Hull-White model. Adding a general specifi cation of 
mean reversion to (4.3) results in (4.4).

 dr a b r dt dz= −( ) + σ  (4.4)

where
b = the long-run mean level of interest rates
a = the speed of mean reversion, also known as the drift rate 

Equation (4.4) represents an Ornstein-Uhlenbeck process. When r 
is above or below b, it will be pulled toward b, although random shocks 
generated by dz may delay this process. 

Ito’s Lemma
Market practitioners armed with a term-structure model next need to 
determine how this relates to the fl uctuation of security prices that are 
related to interest rates. Most commonly, this means determining how 
the price P of a zero-coupon bond moves as the short rate r varies over 
time. The formula used for this determination is known as Ito’s lemma. 
It transforms the equation describing the dynamics of the bond price P 
into the stochastic process (4.5).

 
dP P dr P dr Pr rr t= + ( ) +

1
2

2

 (4.5)

The subscripts rr in (4.5) indicate partial derivatives—the derivative 
with respect to one variable of a function involving several variables. The 
terms dr and (dr)2 are dependent on the stochastic process that is selected 
for the short rate r. If this is the Ornstein-Uhlenbeck process represented 
in (4.4), the dynamics of P can be expressed as (4.6), which gives these 
dynamics in terms of the drift and volatility of the short rate.
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Building a term-structure model involves these steps:
❑ Specify the stochastic process followed by the short rate, making 

certain assumptions about the short rate itself.
❑ Use Ito’s lemma to express the dynamics of the bond price in terms 

of the short rate.
❑ Impose no-arbitrage conditions, based on the principle of hedging 

a position in one bond with a position in another bond (for a one-factor 
model; a two-factor model requires two bonds as a hedge) of a different 
maturity, to derive the partial differential equation of the zero-coupon 
bond price.

❑ Solve the partial differential equation for the bond price, which is 
subject to the condition that the price of a zero-coupon bond on matu-
rity is 1.

One-Factor Term-Structure Models
This section briefl y discusses some popular term-structure models, sum-
marizing the advantages and disadvantages of each under different condi-
tions and for different user requirements.

Vasicek Model
The Vasicek model was the fi rst term-structure model described in the 
academic literature, in Vasicek (1977). It is a yield-based, one-factor equi-
librium model that assumes the short-rate process follows a normal distri-
bution and incorporates mean reversion. The model is popular with many 
practitioners as well as academics because it is analytically tractable—that 
is, it is easily implemented to compute yield curves. Although it has a con-
stant volatility element, the mean reversion feature removes the certainty of 
a negative interest rate over the long term. Nevertheless, some practitioners 
do not favor the model because it is not necessarily arbitrage-free with 
respect to the prices of actual bonds in the market. 

The Vasicek model describes the dynamics of the instantaneous short 
rate as (4.7).

 dr a b r dt dz= −( ) + σ  (4.7) 
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where 
a = the speed of the mean reversion
b = the mean-reversion level of r
z = the standard Weiner process with mean 0 and standard deviation 1 

Note that some texts use different notation, presenting the formula as

 dr r dt dz= −( ) +κ θ σ
or

 dr r dt dZ= −( ) +α µ σ

The price at time t of a zero-coupon bond that matures at time T is 
given by (4.8). (For the derivation, see Vasicek (1977) and section 5.3 in 
Van Deventer and Imai (1997).)

 P t T A t T e B t T r t, , ,( ) = ( ) − ( ) ( )  (4.8)

where
r (t) = the short rate at time t 
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In Vasicek’s model, the short rate r is normally distributed. It therefore 
has a positive probability of being negative. Model-generated negative 
rates are an extreme possibility. Their occurrence depends on the initial 
interest rate and the parameters chosen for the model. They have been 
generated, for instance, when the initial rate was very low, like those seen 
in Japan for some time, and volatility was set at market levels. This pos-
sibility, which other interest rate models also allow, is inconsistent with a 
no-arbitrage market: as Black (1995) states, investors will hold cash rather 
than invest at a negative interest rate. For most applications, however, the 
model is robust, and its tractability makes it popular with practitioners.

Hull-White Model
The well-known model described in Hull and White (1993) uses Vasicek’s 
model to obtain a theoretical yield curve and fi t it to the observed mar-
ket curve. It is therefore sometimes referred to as the extended Vasicek 
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model, with time-dependent drift. (Haug (1998) equates Hull-White to 
the Ho-Lee model, with mean reversion.) Time-dependent drift is a drift 
rate whose value is dependent on the time period used to calculate it, 
based on historical movement up until now. The model is popular with 
practitioners because it enables them to calculate a theoretical curve that 
is identical to yields observed in the market and that can be used to price 
bonds and bond derivatives and to calculate hedges. 

The model is expressed in equation (4.9).
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where 
a = the speed of mean reversion 
b t
a
( ) = a time-dependent mean reversion 

Given this description of the short-rate process, the price at time t of a 
zero-coupon bond with maturity T may be expressed as (4.10).

 P t T A t T e B t T r t, , ,( ) = ( ) − ( ) ( )  (4.10)

where 
r (t) = the short rate at time t 
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Further One-Factor Term-Structure Models
The academic literature and market participants have proposed a large 
number of alternatives to the Vasicek term-structure model and models, 
such as the Hull-White model, that are based on it. Like those they seek to 
replace, each of the alternatives has advantages and disadvantages. 

The main advantage of Vasicek-type models is their analytic tracta-
bility. Their main weakness is that they permit negative interest rates. 
Negative interest rates are not impossible in the actual market; a bond 
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sold as part of a repurchase transaction for which excess market demand 
exists may have a negative rate. Academic researchers, however, often 
prefer to work with environments where negative rates are impossible 
(see Black (1995)). Since such environments are functions of more than 
one variable, Vasicek-type models are considered incapable of model-
ing them. This limitation does not preclude their use; rather, the choice 
of using them or not will depend on the conditions obtaining in the 
economy. In Japan from 1997 to 1998, for example, money market rates 
were frequently below 0.5 percent. At that level, even a volatility value 
below 5 percent, when plugged into the Vasicek model, will imply a high 
probability of negative interest rates. In this environment, therefore, 
practitioners may wish to use an alternative model, perhaps a two-factor 
or multifactor one. 

Cox-Ingersoll-Ross (CIR) Model
Although published offi cially in 1985, the Cox-Ingersoll-Ross model 
was described in academic circles in 1977, or perhaps even earlier, which 
would make it the fi rst interest rate model. Like Vasicek’s it is a one-
factor model that defi nes interest rate movements in terms of the dynam-
ics of the short rate. It differs, however, in incorporating an additional 
feature, which relates the variation of the short rate to the level of interest 
rates. This feature precludes negative interest rates. It also refl ects the fact 
that interest rate volatility rises when rates are high and correspondingly 
decreases when rates are low. The Cox-Ingersoll-Ross model is expressed 
by equation (4.11).

 dr k b r dt rdz= −( ) + σ  (4.11)

k = the speed of mean reversion

Note that the CIR model is often stated with k used to denote the 
speed of mean reversion as a was earlier.

Deriving the zero-coupon bond price given this model is formalized in 
equation (4.12), from Ingersoll (1987), chapter 18. 

 P r A e B r,τ τ τ( ) = ( ) − ( )  (4.12)

where
τ = the term to maturity of the bond, or (T – t)
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Again we use k to denote the speed of mean reversion, and λ is a user-
defi ned parameter to adjust the level of this if necessary, connected with 
the risk premium associated with long-dated bond yields.

Some researchers—Van Deventer and Imai (1997) cite Fleseker (1993), 
for example—have stated that the diffi culties in determining parameters 
for the CIR model have limited its use among market practitioners. Van 
Deventer and Imai, however, conclude that it deserves further empirical 
analysis and remains worthwhile for practical applications.

Two-Factor Interest Rate Models
This section briefl y introduces a number of two-factor interest rate 
models. (The References section indicates sources for further research.) 
As their name suggests, these models specify the yield curve in terms of 
two factors, one of which is usually the short rate. A number of factors 
can be modeled when describing the dynamics of interest rates. Among 
them are

❑  the short-term or instantaneous interest rate
❑ the long-term—say, 10-year—interest rate
❑ short- and long-term real infl ation-adjusted rates of interest
❑  the current or expected spread between the short- and long-term 

interest rates
❑  the current or expected corporate credit spread—that is, the differ-

ence in yield between the equivalent-maturity Treasury and bonds 
having the same credit rating as the subject bond

❑ the current infl ation rate
❑ the long-term average expected infl ation rate
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Which factors the model incorporates depends in part on the purpose 
it is intended to serve—whether, for example, it is being used for pricing 
or hedging derivative instruments or for arbitrage trading. Other consider-
ations also apply, such as the ease and readiness with which the parameters 
involved can be determined. 

Brennan-Schwartz Model
The model described in Brennan and Schwartz (1979) uses the short 
rate and the long-term interest rate to specify the term structure. The 
long-term rate is defi ned as the market yield on an irredeemable, or per-
petual, bond, also known as an undated or consol bond. Both interest 
rates are assumed to follow a Gaussian-Markov process. A Gaussian pro-
cess is one whose marginal distribution, where parameters are random 
variables, displays normal distribution behavior; a Markov process is one 
whose future behavior is conditional on its present behavior only, and 
independent of its past. A later study, Longstaff and Schwartz (1992), 
found that Brennan-Schwartz modeled market bond yields accurately.

In the model, the dynamics of the logarithm of the short rate are 
defi ned by equation (4.13).

 d r a l p r dt dzln ln ln ln( )[ ] = ( )− ( )− ( )⎡⎣ ⎤⎦ + σ1 1  (4.13) 

In (4.13), p represents the relationship between the short rate, r, and 
the long-term rate, l. The short rate changes in response to moves in the 
level of the long rate, which follows the stochastic process described in 
equation (4.14).

 dl l l r dt l dz= − + +⎡
⎣⎢

⎤
⎦⎥ +σ λ σ σ2

2
2 2 2 2  (4.14)

where 
λ = the risk premium associated with the long-term interest rate

Extended Cox-Ingersoll-Ross Model 
Chen and Scott (1992) transformed the CIR model into a two-factor 
model specifying the interest rate as a function of two uncorrelated vari-
ables, both assumed to follow a stochastic process. The article demon-
strated that this modifi cation of the model has a number of advantages 
and useful applications.

The model specifi es the relationship expressed in equation (4.15).

 dy k y dt y dzi i i i i i i= −( ) +θ σ  (4.15)
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where 
yi = the independent variables y1 and y2 
k and θ = the parameters that describe the drift rate and the dz or 

stochastic factor

In this model, the formula for deriving the price of a zero-coupon 
bond is (4.16).

 P y y t T AA e B y B y
1 2 1 2

1 1 2 2, , ,( ) = − −  (4.16)

where A and B are defi ned as before 

Heath-Jarrow-Morton (HJM) Model 
The approach described in Heath-Jarrow-Morton (1992) represents a 
radical departure from earlier interest rate models. The previous models 
take the short rate as the single or (in two- and multifactor models) 
key state variable in describing interest rate dynamics. The specifi cation 
of the state variables is the fundamental issue in applying multifactor 
models. In the HJM model, the entire term structure and not just the 
short rate is taken to be the state variable. Chapter 3 explained that the 
term structure can be defi ned in terms of default-free zero-coupon bond 
prices or yields, spot rates, or forward rates. The HJM approach uses 
forward rates. 

The single-factor HJM model captures the change in forward rates at 
time t, with a maturity at time T, using

❑ a volatility function
❑ a drift function
❑  a geometric Brownian or Weiner process, which describes the 

shocks, or noise, experienced by the term structure

Consider a forward-rate term structure f (0, T ) that is T-integrable—
for which the integral can be computed in terms of the variable T. The 
dynamics of this structure may be described by the stochastic differential 
equation (4.17).

 df t T a t T dt dz, ,( ) = ( ) + σ  (4.17)

where 
a = the drift rate, denoted in some texts by α 

In some texts the term k is used for a. 
σ = the constant volatility level 
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dz = the geometric Brownian motion or Weiner process, denoted in 
some texts by Wt 

 
By applying Ito calculus, i.e., Ito’s lemma, (4.17) can be transformed 

to solve for the price of an asset. Taking the integral of expression (4.17) 
results in equation (4.18), which derives the forward rate,

 f t T f T a s T ds dz
t

, , ,( ) = ( )+ ( ) +∫0
0

σ  (4.18)

where 
s  = an incremental move forward in time, so that
 

 0 ≤ ≤ ≤ ≤t T t s T and 
 
Equation (4.18) assumes that the forward rate is normally distributed. 

Crucially, the forward rates with maturities f  (0,1), f  (0,2) .… f (0, T ) are 
assumed to be perfectly correlated. The random element is the Brownian 
motion dz. The impact of this process is felt over time, rather than over 
different maturities.

The single-factor HJM model states that, given an initial forward-rate 
term structure f (t, T ) at time t, the forward rate for each maturity T is 
given by (4.20), which is the integral of (4.19).

 df t T a t T dt t T dz, , ,( ) = ( ) + ( )σ  (4.19)
 

 f t T f T a s T ds s T dz s
tt

, , , , ( )( ) = ( )+ ( ) + ( )∫∫0
00

σ  (4.20)

Note that the expressions at (4.19) and (4.20) are simplifi ed versions 
of the formal model being discussed. 

Equations (4.19) and (4.20) state that the development of the for-
ward rate for any maturity period T can be described in terms of the drift 
and volatility parameters a(t, T ) and σ(t, T ). The HJM model’s primary 
assumption is that, for each T, the drift and volatility processes are de-
pendent only on the histories up to the current time t of the Brownian 
motion process and of the forward rates themselves.

The Multifactor HJM Model
In the single-factor HJM model, forward rates of all maturities move in 
perfect correlation. For actual market applications—pricing an interest 
rate instrument that is dependent on the spread between two points on 
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the yield curve, for instance—this assumption can be too restrictive. In 
the multifactor model, each of the state variables is described by its own 
Brownian motion process. An m-factor model, for example, would include 
Brownian motions dz1, dz2, ..... , dzm. This allows each T-maturity forward 
rate to be described by its own volatility level σi(ti,T ) and Brownian mo-
tion process dzi. Under this approach, the forward rates derived from the 
bonds of differing maturities that defi ne the current term structure evolve 
under more appropriate random processes, and different correlations 
among forward rates of differing maturities can be accommodated. 

The multifactor HJM model is represented by equation (4.21).
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Equation (4.21) states that the dynamics of the forward-rate process, 
beginning with the initial rate f  (0, T ), are specifi ed by the set of Brownian 
motion processes and the drift parameter. For practical applications, the 
evolution of the forward-rate term structure is usually derived in a bino-
mial-type path-dependent process. Path-independent processes, however, 
have also been used, as has simulation modeling based on Monte Carlo 
techniques (see Jarrow (1996)). The HJM approach has become popular 
in the market, both for yield-curve modeling and for pricing derivative 
instruments, because it matches yield-curve maturities to different volatil-
ity levels realistically and is reasonably tractable when applied using the 
binomial-tree approach.

Choosing a Term-Structure Model
Selecting the appropriate term-structure model is more of an art than a 
science, depending on the particular application involved and the user’s 
individual requirements. The Ho-Lee and BDT versions, for example, are 
arbitrage, or arbitrage-free, models, which means that they are designed to 
match the current term structure. With such models—assuming, of course, 
that they specify the evolution of the short rate correctly—the law of no-
arbitrage can be used to determine the price of interest rate derivatives. 

Equilibrium interest rate models also exist. These make the same as-
sumptions about the dynamics of the short rate as arbitrage models do, 
but they are not designed to match the current term structure. The prices 
of zero-coupon bonds derived using such models, therefore, do not match 
prices seen in the market. This means that the prices of bonds and inter-
est rate derivatives are not given purely by the short-rate process. In brief, 
arbitrage models take as a given the current yield curve described by the 
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market prices of default-free bonds; equilibrium models do not. 
Among the considerations that should be taken into account when 

deciding which term-structure model to use are the following:
❑ Ease of application. In this respect, arbitrage models have the 

advantage. Their key input is the current spot-rate term structure. This, 
unlike the input to equilibrium models, can be determined in a straight-
forward process from the market price of bonds currently trading in the 
market. 

❑ Desirability of capturing market imperfections. The term 
structure generated by an arbitrage model will refl ect the current mar-
ket term structure, which may include pricing irregularities arising from 
liquidity and other considerations. Equilibrium models do not refl ect such 
irregularities. Selection of a model will depend on whether or not model-
ing market imperfections is desirable.

❑ Application in pricing bonds or interest rate derivatives. Tra-
ditional seat-of-the-pants bond pricing often employs a combination of 
good sense, prices observed in the market (often from interdealer-broker 
screens), and gut feeling. A more scientifi c approach may require a yield-
curve model, as will relative value trading—trading bonds of different ma-
turities against each other, for example, in order to bet on changes in yield 
spreads. In such cases, equilibrium models are clearly preferable, since 
traders will want to compare the theoretical prices given by the model 
with the prices observed in the market. Arbitrage models, in contrast, 
assume that the market bond prices are correct. So, an arbitrage model 
would always suggest that there was no gain to be made from a relative 
value trade. 

Pricing derivative instruments such as interest rate options (or swap-
tions) requires a different emphasis. The primary consideration of the de-
rivative market maker is the technique and price of hedging the derivative. 
When writing derivative contracts, market makers simultaneously hedge 
their exposure using either the underlying assets or a combination of 
these and other derivatives, such as exchange-traded futures. They profi t 
from the premium they extract and from the difference in price over time 
between the derivative and the hedge. In this enterprise, only arbitrage 
models are appropriate, because they price derivatives relative to the actual 
market. An equilibrium model, in contrast, prices derivatives relative to a 
theoretical market, which is not appropriate, since those used in the hedge 
are market instruments.

❑ Use of models over time. The parameters in an interest rate model
—most notably the drift, volatility, and, if applicable, mean reversion 
rate—refl ect the current state of the economy. This state is not constant; 
the drift rate used today, for example, may well differ from the value used 
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tomorrow. Over time, any model must be recalibrated. For arbitrage mod-
els, however, this is a constant process, since their parameters change con-
tinuously. Equilibrium model parameters, in contrast, are calculated from 
historical data or using logic, and so may not change as frequently. On the 
other hand, the accuracy of these models may suffer over time, as current 
rates diverge from historic average rates. Users must decide whether the 
greater accuracy of the arbitrage model is worth the constant tweaking 
that makes it possible.

This list is just a sample. Users must consider a wide range of issues 
when selecting an interest rate model. It has been observed, for instance, 
that models that incorporate mean reversion are more accurate than those 
that do not. Another crucial consideration is the computer processing 
power available to the user. Single-factor models are often preferred pre-
cisely because their processing is more straightforward. 
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C H A P T E R  5

Fitting the Yield Curve 

This chapter considers some of the techniques used to fi t the model-
derived term structure to the observed one. The Vasicek, Brennan-
Schwartz, Cox-Ingersoll-Ross, and other models discussed in chap-

ter 4 made various assumptions about the nature of the stochastic process 
that drives interest rates in defi ning the term structure. The zero-coupon 
curves derived by those models differ from those constructed from observed 
market rates or the spot rates implied by market yields. In general, market 
yield curves have more-variable shapes than those derived by term-structure 
models. The interest rate models described in chapter 4 must thus be cali-
brated to market yield curves. This is done in two ways: either the model is 
calibrated to market instruments, such as money market products and inter-
est rate swaps, which are used to construct a yield curve, or it is calibrated 
to a curve constructed from market-instrument rates. The latter approach 
may be implemented through a number of non-parametric methods. 

There has been a good deal of research on the empirical estimation 
of the term structure, the object of which is to construct a zero-coupon 
or spot curve (or, equivalently, a forward-rate curve or discount func-
tion) that represents both a reasonably accurate fi t to market prices and a 
smooth function—that is, one with a continuous fi rst derivative. Though 
every approach must make some trade off between these two criteria, both 
are equally important in deriving a curve that makes economic sense. 

This chapter presents an overview of some of the methods used to fi t 
the yield curve. A selection of useful sources for further study is given, as 
usual, in the References section.
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Yield Curve Smoothing
Carleton and Cooper (1976) describes an approach to estimating term struc-
ture that assumes default-free bond cash fl ows, payable on specifi ed discrete 
dates, to each of which a set of unrelated discount factors are applied. These 
discount factors are estimated as regression coeffi cients, with the bond cash 
fl ows being the independent variables and the bond price at each payment 
date the dependent variable. This type of simple linear regression produces 
a discrete discount function, not a continuous one. The forward-rate curves 
estimated from this function are accordingly very jagged. 

McCulloch (1971) proposes a more practical approach, using polyno-
mial splines. This method produces a function that is both continuous and 
linear, so the ordinary least squares regression technique can be employed. 
A 1981 study by James Langetieg and Wilson Smoot, cited in Vasicek and 
Fong (1982), describes an extended McCulloch method that fi ts cubic 
splines to zero-coupon rates instead of the discount function and uses 
nonlinear methods of estimation.

The term structure can be derived from the complete set of discount 
factors—the discount function—which can themselves be extracted from 
the price of default-free bonds trading in the market using the bootstrap-
ping technique described in chapter 1. This approach is problematic, 
however. For one thing, it is unlikely that the complete set of bonds in 
the market will pay cash fl ows at precise six-months intervals from today 
to thirty years from now or longer, which, as explained in chapter 1, is 
necessary for the bootstrapping derivation to work. Adjustments must 
be made for cash fl ows received at irregular intervals or, in the case of 
longer maturities, not at all. Another issue is that bootstrapping calculates 
discount factors for terms that are multiples of six months, but in reality, 
non-standard periods, such as 4-month or 14.2-year maturities, may be 
involved, particularly in pricing derivative instruments. A third problem 
is that bonds’ market prices often refl ect investor considerations such as 
the following:

❑  how liquid the bonds are, which is itself a function of issue size, 
market-maker support, investor demand, whether their maturities 
are standard or not, and other factors

❑  whether the bonds trade continuously (if they don’t, some prices 
will be “newer” than others)

❑ the tax treatment of the cash fl ows
❑ the bid-offer spread

These considerations introduce what is known in statistics as error or 
noise into market prices. To handle this, smoothing techniques are used in 
the derivation of the discount function. 
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FIGURE 5.2 is the graph of the discount function derived by bootstrap-
ping from the U.S. Treasury prices as of December 23, 2003. FIGURE 5.3 
shows the zero-coupon yield and forward-rate curves corresponding to 
this discount function. Compare these to the yield curve in FIGURE 5.1 
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FIGURE 5.1   U.S. Treasury Yields to Maturity on December 23, 2003

FIGURE 5.2   Discount Function Derived from U.S. Treasury Prices 
on December 23, 2003
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(a Bloomberg screen), which is plotted from Treasury redemption yields 
using Bloomberg’s IYC function. 

The zero-coupon curve in fi gure 5.3 is relatively smooth, though not 
quite as smooth as the discount function curve in fi gure 5.2. The forward-
rate curve, in contrast, is jagged. Irregularities in implied forward rates 
indicate to the fi xed-income analyst that the discount function and the 
zero-coupon curve are not as smooth as they appear. The main reason that 
the forward-rate curve is so jagged is that minor errors in the discount 
factors, arising from any of the reasons given above, are compounded in 
calculating spot rates from them and further compounded when these are 
translated into the forward rates. 

Smoothing Techniques
A common smoothing technique is linear interpolation. This approach 
fi lls in gaps in the market-observed yield curve caused by associated gaps 
in the set of observed bond prices by interpolating missing yields from 
actual yields. 

Linear interpolation is simple but not accurate enough to be rec-
ommended. Market analysts use multiple regression or spline-based 
methods instead. One technique is to assume that the discount factors 
represent a functional form—that is, a higher-order function that takes 

FIGURE 5.3  Zero-Coupon (Spot) Yield and Forward-Rate Curves 
Corresponding to the Discount Function
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other functions as its parameters—and estimate its parameters from 
market bonds prices. 

Cubic Polynomials
One simple functional form that can be used in smoothing the discount 
function is a cubic polynomial. This approach approximates the set of dis-
count factors using a cubic function of time, as shown in (5.1).

 d t a a t a t a t( ) = + ( ) + ( ) + ( )0 1 2
2

3
3  (5.1)

where 
d(t) = the discount factor for maturity t 

Some texts use a, b, and c in place of a1 and so on.
The discount factor for t = 0, that is for a bond maturing right now, is 1, 

i.e., the present value of a cash fl ow received right now is simply the value of 
the cash fl ow. Therefore a0 = 1, and (5.1) can then be rewritten as (5.2).

 d̂ t a t a t a t( )− = ( ) + ( ) + ( )1 1 2
2

3
3  (5.2)

As discussed in chapter 1, the market price of a coupon bond can be 
expressed in terms of discount factors. Equation (5.3) derives the price of 
an N-maturity bond paying identical coupons C at regular intervals and a 
redemption value M at maturity.

 P d t C d t C d t C MN= ( ) + ( ) + + ( ) +( )1 2 .....  (5.3)

Replacing the discount factors in (5.3) with their cubic polynomial 
expansions, given by (5.2), results in expression (5.4).
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To describe the yield curve, it is necessary to know the value of the 
coeffi cients of the cubic function. They can be solved by rearranging 
(5.4) as (5.5) and further rearranging this expression to give (5.6), which 
has been simplifi ed by substituting Xi for the appropriate bracketed ex-
pressions. This is the form most commonly found in textbooks.
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 P M C a X a X a X− +( ) = + +∑ 1 1 2 2 3 3  (5.6)

The cubic polynomial approach has several drawbacks that limit its 
practical application. First, equation (5.6) must be solved for each bond 
in the data set. More important, the result is not a true curve but a set of 
independent discount factors that have been adjusted with a line of best 
fi t. Third, small changes in the data can have a signifi cant impact at the 
nonlocal level. A change in a single data point in the early maturities, for 
example, can result in bad behavior in the longer maturities. 

One solution is to use a piecewise cubic polynomial, where d(t) is 
associated with a different cubic polynomial, with different coeffi cients. 
A special case of this approach, the cubic spline, is discussed in the next 
section.

Non-Parametric Methods
Beyond the cubic polynomial, there are two main approaches to fi tting 
the term structure: parametric and non-parametric curves. Parametric 
curves are based on term-structure models such as those discussed in 
chapter 4. As such, they need not be discussed here. Non-parametric 
curves, which are constructed employing spline-based methods, are 
not derived from any interest rate models. Instead, they are general 
approaches, described using sets of parameters. They are fi tted using 
econometric principles rather than stochastic calculus, and are suitable 
for most purposes. 

Spline-Based Methods
A spline is a type of linear interpolation. It takes several forms. The spline 
function fi tted using regression is the most straightforward and easiest to 
understand. Unfortunately, as illustrated in James and Webber (2000), sec-
tion 15.3, when applied to yield-curve construction, this method can be 
overly sensitive to changes in parameters, causing curves to jump wildly. 

An nth-order spline is a piecewise polynomial approximation using 
n-degree polynomials that are differentiable n-1 times, i.e., they have n-1 
derivatives. Piecewise signifi es that the different polynomials are connected 
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at arbitrarily selected knot points. A cubic spline is a piecewise three-degree, 
or cubic, polynomial that is differentiable twice along all its points. 

The x-axis in the regression is divided into segments at the knot points, 
at each of which the slopes of adjoining curves on either side of the point 
must match, as must the curvatures. FIGURE 5.4 shows a cubic spline with 
knot points at 0, 2, 5, 10, and 25 years, at each of which the curve is a 
cubic polynomial. This function permits a high and low to be accommo-
dated in each space bounded by the knot points. The values of the curve 
can be adjoined at the knot point in a smooth function.

Cubic spline interpolation assumes that there is a cubic polynomial 
that can estimate the yield curve at each maturity gap. A spline can be 
thought of as a number of separate polynomials of the form y = f (X ), 
where X is the complete range of the maturity term divided into user-
specifi ed segments that are joined smoothly at the knot points. Given a set 
of bond yields r r r rn0 1 2, , ,.....  at maturity points t t t tn0 1 2, , ,..... , the cubic spline 
function can be estimated as follows:

❑  The yield of bond i at time t is expressed as a cubic polynomial of the 
form r t a b t c t d ti i i i i( ) = + + +2 3 for the interval between ti-1 and ti.

❑  The 4n unknown coeffi cients of the cubic polynomial for all n 
intervals between the n + 1 data points are calculated.

❑  These equations are solved, which is possible because they are made 
to fi t the observed data. They are twice differentiable at the knot 
points, and the two derivatives at these points are equal.

FIGURE 5.4  Cubic Spline with Knot Points at 0, 2, 5, 10, and 25
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❑  The curve is constrained to be instantaneously straight at the short-
est and the longest maturities, that is r ″ (0) = 0, with the double 
prime notation representing the second-order derivative. 

The general formula for a cubic spline is (5.7).
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where 
τ = the time of receipt of cash fl ows
Xp = the knot points, with X X X X p nn p p0 1 0 1,....., , , ,....,{ } < = −+

 τ τ−( ) = −( )X Xp pmax ,0  

In practice, the spline is expressed as a set of basis functions, with the 
general spline being a combination of these. This may be arrived at using 
B-splines. The B-spline for a specifi ed number of knot points {X0,.....,Xn} 
is (5.8).
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where Bp(τ) denotes cubic splines that are approximated on {X0,....., Xn} 
using function (5.9)
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where
λ λ λ= ( )− −3 1,....., n  are the required coeffi cients 

The maturity periods τ1,.....,τn specify the B-splines, so
B Bp j p n j m

= ( ){ }
=− − =

τ
3 1 1,....., , ,.....,  and ˆ ,.....,δ δ τ δ τ= ( ) ( )( )1 m . From this, the equivalence 

(5.10) and the regression equation (5.11) follow.

 δ̂ λ= ′B  (5.10)

 λ ε ε ε λ
λ

* argmin |= ′ = −{ }P D  (5.11)

where
D = CB ′
ε′ε = the minimum errors 
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Equation (5.11) is computed using ordinary least squares regression.

Nelson and Siegel Curves
The curve-fi tting technique fi rst described in Nelson and Siegel (1985) 
has since been modifi ed by other authors, resulting in a “family” of 
curves. This is not a bootstrapping technique but a method for estimat-
ing the zero-coupon yield curve from observed T-bill yields, assuming a 
forward-rate function. The method creates a satisfactory rough fi t of the 
complete term structure, with some loss of accuracy at the very short and 
very long ends. 

The original article specifi es four parameters. The implied forward-
rate yield curve is modeled along the entire term structure using function 
(5.12).

 rf m m
t

m
t

m
t

, exp expβ β β β( ) = +
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

−
0 1

1
2
1 11

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟  (5.12)

where
β = (β0, β1, β2, t1) = the vector of parameters describing the yield

curve
m = the maturity at which the forward rate is calculated 

The three components on the right side of equation (5.12) are a con-
stant term, a decay term, and a term representing the “humped” nature 
of the curve. The long end of the curve approaches an asymptote, the 
value of which is given by β0 at the long end, with a value of β0 + β1 at 
the short end. 

The Svensson model, proposed in Svensson (1994), is a version of the 
Nelson and Siegel curve with an adjustment for the hump in the yield 
curve. This is accomplished by expanding (5.12) as (5.13).
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The Svensson curve is thus modeled using six parameters, with the ad-
ditional input of β3 and t2.

As approximations, Nelson and Siegel curves are appropriate for no-
arbitrage applications. They are popular in the market because they are 
straightforward to calculate. Jordan and Mansi (2000) imputes two fur-
ther advantages to them: they force the long-date forward curve into a 
horizontal asymptote, and the user is not required to specify knot points, 
whose choice determines how effective the cubic spline curves are. The 
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same article also notes two disadvantages: these curves are less fl exible than 
spline-based ones, and they may not fi t the observed data as accurately. 
James and Webber (2000), pages 444–445, suggests that because of the 
limited number of parameters involved, Nelson and Siegel curves lack 
fl exibility and states further that they are accurate only for yield curves 
with one hump, not for those with both a hump and trough.  

Comparing Curves
The choice of curve depends on the user’s requirements and intended 
application. It usually represents a trade-off between ease of computa-
tion and accuracy. The user must determine how well any curve meets 
the following criteria, which are all met to a greater or lesser extent by the 
methodologies discussed:

❑  Accuracy. Does the curve fi t reasonably well? 
❑  Flexibility. Is it fl exible enough to accommodate a variety of yield 

curve shapes?
❑  Model consistency. Is the fi tting method consistent with a model 

such as Vasicek or Cox-Ingersoll-Ross?
❑  Simplicity. Is the curve tractable—that is, reasonably simple to 

compute?

A good summary of the advantages and disadvantages of popular mod-
eling methods can be found in James and Webber (2000), chapter 15.
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Selected Cash and
Derivative Instruments

P A R T  T W O

Part Two discusses selected instruments traded in the debt capi-

tal markets. The products—hybrid securities, mortgage-backed 

bonds, and callable bonds—have been chosen to give the reader 

an idea of the variety available in the market. Also described are 

index-linked bonds and a structured product known as a col-

lateralized debt obligation (CDO). Some of the techniques for 

analyzing these more complex products are explained.

This part also considers the primary fi xed-income derivative 

instruments. These are not securities in the cash markets and are 

fi xed-income derivatives (or interest rate derivatives) in the syn-

thetic markets. 

The products discussed include interest rate swaps, options, and 

credit derivatives. There is also a chapter on the theory behind for-

ward and futures pricing, with a case study featuring the price history 

and implied repo rate for the CBOT long bond future. 

93



C H A P T E R  6

Forwards and Futures Valuation

Interest rate futures will be described in chapter 13. This chapter devel-
ops basic valuation concepts. The discussion is adapted, with permis-
sion, from section 2.2 of Rubinstein (1999). 

Forwards and Futures
A forward is a contract between two parties in which one agrees to pur-
chase from the other a specifi ed asset at a specifi ed price for delivery at a 
specifi ed future date. The following discussion refers to these variables:

P = the current price of the underlying asset, also known as the spot 
price 

PT = the spot price of the underlying asset at the time of delivery
X = the delivery price specifi ed in the forward contract
T = the term to maturity of the contract, in years, also referred to as 

the time to delivery
r = the risk-free T-bill interest rate 
R = the return of the payout, or its yield
F = the current forward price, that is, the current market prediction of 

the underlying asset’s price on the delivery date 

The payoff of a forward contract is given by expression (6.1). 

Payoff = PT – X (6.1)
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The payout yield, R, is the percentage of the spot price that is paid out 
at contract expiry, i.e., R = (PT – X ) / PT . The forward contract terms are 
set so that the present value of the payout (PT – X ) is zero. This means 
that the forward price, F, on day one of the contract equals X. (Note that 
the forward price is not the same as the value of the contract, which at this 
point is zero.) From the initiation of the contract until its expiration, the 
value of X remains fi xed. The forward price, F, however, fl uctuates, gener-
ally rising and falling with the spot price of the underlying asset.

Like forwards, futures contracts also represent agreements to purchase/
sell a specifi ed asset at a specifi ed price for delivery on a specifi ed date. 
While forwards, however, are custom instruments designed to meet indi-
vidual requirements, futures are standardized contracts that are traded on 
recognized futures exchanges. 

Commodity futures are settled by the physical delivery of the underly-
ing asset; many fi nancial futures are settled in cash. A bond future—which 
is written on a notional bond that can represent any of a set of bonds fi t-
ting the contract terms, known as the contract’s delivery basket—is settled 
by delivering to the long counterparty one of these bonds. Only a very 
small percentage of either commodity or fi nancial futures contracts are 
delivered into—that is, involve the actual transfer of the underlying asset 
to the long counterparty. This is because the majority of futures trading is 
done to hedge or to speculate. Accordingly, most futures positions are net-
ted out to zero before contract expiry, although, if the position is held into 
the delivery month, depending on the contract’s terms and conditions, the 
long future may be delivered into. 

Cash Flow Differences
Aside from how they are constructed and traded, the most signifi cant 
difference between forwards and futures, and the feature that infl uences 
differences between their prices, concerns their cash fl ows. The profi ts or 
losses from futures trading are realized at the end of each day. Because of 
this daily settlement, at expiration all that needs to be dealt with is the 
change in the contract value from the previous day. With forwards, in 
contrast, the entire payout occurs at contract expiry. (In practice, the situ-
ation is somewhat more complex, because the counterparties have usually 
traded a large number of contracts with each other, across a number of 
maturity periods and, perhaps, instruments, and as these contracts expire 
they exchange only the net loss or gain on the contract.) 

FIGURE 6.1 shows the daily cash fl ows for a forward and a futures con-
tract having identical terms. The futures contract generates intermediate 
cash fl ows; the forward doesn’t. As with the forward contract, the delivery 
price specifi ed in the futures contract is set so that at initiation, the pres-
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ent value of the futures contract is zero. At the end of each day, the future 
is marked to market at the close price. This will result in a profi t or a 
gain—or neither, if the closing price is unchanged from the previous day’s 
closing price, which technical traders call a doji—which is handed over to 
the appropriate counterparty. Through this daily settlement, the nominal 
delivery price is reset each day so that the present value of the contract is 
always zero. This means that the future and nominal delivery prices of a 
futures contract are the same at the end of each trading day. 

As illustrated in fi gure 6.1, the process works as follows: After day one, 
the future price is reset from F to F1. The amount (F1 – F ), if positive, is 
handed over by the short counterparty to the long counterparty. If the 
amount is negative, it is paid by the long counterparty to the short. On the 
expiry day, T, of the contract, the long counterparty receives a settlement 
amount equal toP FT T− −1 , which is the difference between the future 
price and the price of the underlying asset. The daily cash fl ows cancel 
each other out, so that at expiry the value of the contract is identical to 
that for a forward, that is (PT – F ). 

All market participants in exchange-traded contracts trade with a 
central counterparty, the exchange’s clearing house. This eliminates coun-
terparty risk. The clearing house is able to guarantee each deal, because 
all participants are required to contribute to its clearing fund through 
margining: each participant deposits an initial margin and then every day, 
as profi ts and losses are recorded, deposits a further variation margin as 

FIGURE 6.1  Cash Flows for Forwards and Futures Contracts
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needed. Marking the futures contract to market is essential to this margin 
process. 

Daily settlement has both advantages and disadvantages. If a position 
is profi table, receiving part of this profi t daily, as happens with a futures 
contract, is advantageous because the funds can be reinvested while the 
position is still maintained. On the other hand, a losing position saddles 
the holder of a futures contract with daily losses not suffered by the holder 
of a loss-making forward position.

Relationship Between Forward and Futures Prices
Under certain specifi ed conditions, the prices of futures and forwards with 
identical terms must be the same. Consider two trading strategies with 
identical terms to maturity and written on the same underlying asset, one 
using forward contracts and the other futures. Neither strategy requires an 
initial investment, and both are self-fi nancing—that is, all costs and future 
funding are paid out of proceeds. Assume the following conditions:

❑ no risk-free arbitrage opportunities 
❑ an economist’s perfect market
❑ certainty of returns

For the strategy employing forwards, rT contracts are bought, where r 
is the daily return (or instantaneous money market rate) and T the matu-
rity term in days. The start forward price is F = X, and the payoff on expiry 
is r P FT

T −( ).
The futures strategy is more involved, because of the margin cash fl ows 

that are received or paid daily during the term of the trade. On day one, 
r contracts are bought, each priced at F. After the close that day, F1 – F is 
received. The position is closed out, and the cash received is invested at the 
daily rate, r, up to the expiry date. The return on this investment is rT−1. 
Thus, on expiry the counterparty will receive r F F rT1

1−( ) − .
The next day, r 2 futures contracts are bought at a price of F1. At the 

close, the cash fl ow of F F2 1−  is received and invested at rT–2, generating 
a return on expiry of r F F rT2

2 1
2−( ) − . This process is repeated until the 

expiry date, which is assumed to be the delivery date. The return from 
following this strategy is expression (6.2). 

 

 

r F F r F F r F F

r P F r P F

T T T

T
T T

T
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−( )+ −( )+ −( )+

+ + −( ) −( )−..... =  (6.2)
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This is also the payoff from the forward contract strategy. The key 
point is that if equation (6.3) below holds, then so must (6.4).

 r P F r P FT
T forward

T
T future−( ) = −( )  (6.3)

 F Fforward future=  (6.4)

Forward-Spot Parity
The forward strategy can be used to imply the forward price, provided that 
the current price of the underlying and the money market interest rate are 
known. FIGURE 6.2 illustrates how this works, using the one-year forward 
contract whose profi t/loss profi le is graphed in fi gure 6.1 and assuming an 
initial spot price, P, of $50, a risk-free rate, r, of 1.05 percent, and a payout 
yield, R, of 1 percent. 

FIGURE 6.3 shows that the payoff profi le illustrated in fi gure 6.1 can 
be replicated by a portfolio composed of one unit of the underlying asset 

FIGURE 6.2  Forward Contract Profit/Loss Profile

   TIME FORWARD CONTRACT FUTURES CONTRACT

 0 0 0

 1 0 F1 – F

 2 0 F2 – F1

 3 0 F3 – F2

 4 0 F4 – F3

 5 0 F5 – F4

 … 0 …

 … 0 …

 … 0 …

 T – 1 0 FT–1 – FT–2

 T PT – F PT  – FT–1

 Total PT  – F PT  – F
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whose purchase is fi nanced by borrowing at the risk rate, which equals the 
discount rate, for the term of the forward contract. At contract expiry the 
loan is settled by paying a sum equal to F / . .1 05 1 05( )× , which reduces to 
F. Since no arbitrage opportunity exists, the cost of creating the portfolio 
must be identical to the cost of the forward. As noted, the cost of the 
forward contract at initiation is set at zero. Equation (6.5) must therefore 
hold. 

 − + =50 1 05 0F / .  (6.5)
 F = × =50 1 05 52 50. .

The general relationship between the forward price and the spot 
prices is demonstrated in FIGURE 6.4. As in fi gure 6.3, the fi rst step is to 
replicate a forward’s payoff profi le with a portfolio composed of R -T units 
of the underlying asset, whose creation is funded by borrowing a sum 
equal to the present value of the forward price. Again, as in fi gure 6.3, the 
loan is settled on the forward expiry date by paying an amount equal to
Fr r FT T−( )× = . 

By design, the portfolio has a payoff that is identical to the forward’s:
P FT −( ). The cost of setting up the portfolio must therefore equal the 

current price of the forward: if one were cheaper than the other, a trader 
could make a risk-free profi t by buying the cheaper instrument and short-

FIGURE 6.3  Forward Strategy

   CASH FLOWS
 START DATE EXPIRY

Buy forward contract 0 PT – F

Buy one unit of the underlying asset –50 PT 

Borrow zero present-value of 

   forward price F / 1.05 F

Total –50 + F / 1.05 PT  – F

Result

Set –50 + F / 1.05 equal to zero (no-arbitrage condition)

Therefore F = 52.5
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ing the more expensive one. The current cost of the forward—its present 
value—is zero. The cost of constructing the duplicating portfolio must 
therefore be zero as well. This is expressed in equation (6.6a), which may 
be solved for F as (6.6b).

 − + =− −PR FrT T 0  (6.6a)

 F P r R T= ( )/  (6.6b)

The price of the forward contract is thus a function of the current 
underlying spot price, the risk-free or money market interest rate, the 
payoff, and the maturity of the contract. It can be shown that neither 
F P r R T> ( )/  nor F P r R T< ( )/  is possible unless arbitrage is admitted. 
The only possibility is (6.6b), which describes the state in which the 
futures price is at fair value. 

The Basis and Implied Repo Rate
This section introduces some terms used in the futures markets. The fi rst 
is basis: the difference between the price of a futures contract and the 
current underlying spot price. The size of the basis is a function of issues 
such as cost of carry, the net cost of holding the underlying asset from 

FIGURE 6.4  Proof of Forward-Spot Parity

 START DATE EXPIRY

Buy forward contract 0 PT – F

Buy R –T units of the underlying asset –PR –T PT 

Borrow zero present-value of 

   forward price Fr –T

  –F

Total –PR –T + Fr -T PT  – F

Result

Set –PR –T + Fr  –T = 0

Therefore F = P (r / R )T
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the trade date to expiry or delivery date. The basis is positive or negative 
depending on the type of market involved. When it is positive—that is, 
when F > P, which is common in precious metals markets—the situation 
is termed a contang. A negative basis, P < F, which is common with oil 
contracts and in foreign currency markets, is known as backwardation. 

CASE STUDY:  CBOT September 2003 U.S. Long Bond Futures 
Contract

In theory, a futures contract represents the price for forward 
delivery of the underlying asset. The price of the future and that 
of the underlying asset should therefore converge as the contract 
approaches maturity. In actuality, however, this does not occur. For 
a bond futures contract, convergence is best viewed through the 
basis. This is illustrated in FIGURE 6.5. This shows all of the U.S. 
Treasury securities whose terms, at that time, make them eligible 
to deliver into the futures contract. The underlying whose price is 
used is the U.S. Treasury 6.5 percent due 2023, the cheapest-to-
deliver Treasury for most of this contract’s life, as demonstrated 

FIGURE 6.5  Bloomberg Screen Shows the Cheapest to 
Deliver for September 2003 U.S. Long Bond 
Futures Contract
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For bond futures, the gross basis represents the cost of carry associated 
with the notional bond from the present to the delivery date. Its size is 
given by equation (6.7).

 Basis P P CFbond fut= − ×( )  (6.7)
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in FIGURE 6.6. Figure 6.6 demonstrates the convergence of the 
future and underlying asset price through the contraction of the 
basis, as the contract approaches expiry. Note that the implied repo 
rate remains fairly stable through most of the future’s life, confi rm-
ing the analysis suggested earlier. It does spike towards maturity, 
illustrating its sensitivity to very small changes in cash or futures 
price. The rate becomes more sensitive in the last days because 
there are fewer days to expiry and delivery, so small changes have 
larger effects.

FIGURE 6.6  Bloomberg DLV Screen for September 2003 
U.S. Long Bond Futures Contract
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where 
CF = the conversion factor for the bond in question

The conversion factor equalizes each deliverable bond to the futures 
price. The bond with the lowest gross basis is known as the cheapest to 
deliver. 

Generally, the basis declines over time, becoming zero on the contract’s 
expiry date. The size of the basis, however, changes continuously, creating 
an uncertainty termed basis risk. The signifi cance of this risk is greatest 
for market participants who use futures contracts to hedge positions in 
the underlying asset. Hedging futures and the underlying asset requires 
keen observation of the basis. One way to hedge a position in a futures 
contract is to take an opposite position in the underlying asset. This, how-
ever, entails a cost of carry, which, depending on the nature of the asset, 
may include storage costs, the opportunity cost of forgoing interest on the 
principal, the funding cost of holding the asset, and other expenses. 

The futures price can be analyzed in terms of the forward-spot parity 
relationship and the risk-free interest rate. Say that the risk-free rate is 
r – 1. The forward-spot parity equation (repeated as (6.8a)) can be rewrit-
ten in terms of this rate as (6.8b), which must hold because of the no-
arbitrage assumption. 

 F P r R T= ( )/  (6.8a)

 r R F P T− = ( ) −1 11/ /  (6.8b)

This risk-free rate is known as the implied repo rate, because the rate is 
similar to a repurchase agreement carried out in the futures market. Gen-
erally, high implied repo rates indicate high futures prices, low rates imply 
low prices. The rates can be used to compare contracts that have different 
terms to maturity and even underlying assets. The implied repo rate for 
the contract is more stable than its basis, but as maturity approaches it 
becomes very sensitive to changes in the futures price, spot price, and (by 
defi nition) time to maturity. 
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Swaps

Swaps are off-balance-sheet transactions involving two or more basic 
building blocks. Most swaps currently traded in the market involve 
combinations of cash-market rates and indexes—for example, a 

fi xed-rate security combined with a fl oating-rate one, with a currency 
transaction perhaps thrown in. Swaps also exist, however, that have fu-
tures, forward, or option components. 

The market for swaps is overseen by the International Swaps and 
Derivatives Association (ISDA). Swaps are among the most important and 
useful instruments in the debt capital markets. They are used by a wide 
range of institutions, including commercial banks, mortgage banks and 
building societies, corporations, and local governments. Demand for them 
has grown because the continuing volatility of interest and exchange rates 
has made hedging exposures to these rates ever more critical. As the mar-
ket has matured, swaps have gained wide acceptance and are now regarded 
as plain vanilla products. Virtually all commercial and investment banks 
quote swap prices for their customers. Since they are over-the-counter in-
struments, transacted over the telephone, it is possible for banks to tailor 
swaps to match the precise requirements of individual customers. There 
is a close relationship between the bond and swap markets, and corporate 
fi nance teams and underwriting banks watch the government and the 
swap yield curves for opportunities to issue new debt.

This chapter discusses the uses of interest rate swaps, including as a 
hedging tool, from the point of view of bond-market participants. The 
discussion touches on pricing, valuation, and credit risk, but for complete 
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coverage of these topics, the reader is directed to the works listed in the 
References section.

Interest Rate Swaps
The market in dollar, euro, and sterling interest rate swaps is very large and 
very liquid. These are the most important type of swaps in terms of trans-
action volume. They are used to manage and hedge interest rate exposure 
or to speculate on the direction of interest rates. 

An interest rate swap is an agreement between two counterparties to 
make periodic interest payments to one another during the life of the swap. 
These payments take place on a predetermined set of dates and are based 
on a notional principal amount. The principal is notional because it is never 
physically exchanged—hence the off-balance-sheet status of the transac-
tion—but serves merely as a basis for calculating the interest payments. 

In a plain vanilla, or generic, swap, one party pays a fi xed rate, agreed 
upon when the swap is initiated, and the other party pays a fl oating rate, 
which is tied to a specifi ed market index. The fi xed-rate payer is said to be 
long, or to have bought, the swap. In essence, the long side of the transac-
tion has purchased a fl oating-rate note and issued a fi xed-coupon bond. The 
fl oating-rate payer is said to be short, or to have sold, the swap. This coun-
terparty has, in essence, purchased a coupon bond and issued a fl oating-
rate note.

An interest rate swap is thus an agreement between two parties to 
exchange a stream of cash fl ows that are calculated by applying different 
interest rates to a notional principal. For example, in a trade between Bank 
A and Bank B, Bank A may agree to pay fi xed semiannual coupons of 10 
percent on a notional principal of $1 million in return for receiving from 
Bank B the prevailing 6-month LIBOR rate applied to the same princi-
pal. The known cash fl ow is Bank A’s fi xed payment of $50,000 every six 
months to Bank B.

Interest rate swaps trade in a secondary market, where their values 
move in line with market interest rates, just as bonds’ values do. If, for 
instance, a 5-year interest rate swap is transacted at a fi xed rate of 5 percent 
and 5-year rates subsequently fall to 4.75 percent, the swap’s value will 
decrease for the fi xed-rate payer and increase for the fl oating-rate payer. 
The opposite would be true if 5-year rates moved to 5.25 percent. To 
understand why this is, think of fi xed-rate payers as borrowers. If interest 
rates fall after they settle their loan terms, are they better off? No, because 
they are now paying above the market rate on their loan. For this reason, 
swap contracts decrease in value to the fi xed-rate payers when rates fall. 
On the other hand, fl oating-rate payers gain from a fall in rates, because 
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their payments fall as well, and the value of the contract rises for them. 
A bank’s swaps desk has an overall net interest rate position arising 

from all the swaps currently on its books. This position represents an inter-
est rate exposure at all points along the term structure out to the maturity 
of the longest-dated swap. At the close of business each day, all the swaps 
on the books are marked to market at the interest rate quote for the day.

A swap can be viewed in two ways. First, it may be seen as a strip of 
forward or futures contracts that mature every three or six months out to 
the maturity date. Second, it may be seen as a bundle of cash fl ows arising 
from the sale and purchase of cash market instruments—the preferable 
view in the author’s opinion. 

Say a bank has only two positions on its books: 
❑  A long $100 million position in a 3-year fl oating-rate note (FRN) 

that pays 6-month LIBOR semiannually and is trading at par
❑  A short $100 million position in a 3-year Treasury that pays a 

6 percent coupon and is also trading at par

Being short a bond is the equivalent to being a borrower of funds. 
Assuming that these positions are held to maturity, the resulting cash fl ows 
are those shown in FIGURE 7.1. 

There is no net outfl ow or infl ow at the start of these trades, because 
the $100 million spent on the purchase of the FRN is netted with the 
receipt of $100 million from the sale of the Treasury. The subsequent net 
cash fl ows over the three-year period are shown in the last column. As at 
the start of the trade, there is no cash infl ow or outfl ow on maturity. The 
net position is exactly the same as that of a fi xed-rate payer in an interest 
rate swap. For a fl oating-rate payer, the cash fl ow would mirror exactly that 
of a long position in a fi xed-rate bond and a short position in an FRN. 
Therefore, the fi xed-rate payer in a swap is said to be short in the bond 
market—that is, a borrower of funds—and the fl oating-rate payer is said 
to be long the bond market.

Market Terminology
Virtually all swaps are traded under the legal terms and conditions stipu-
lated in the ISDA standard documentation. The trade date for a swap is, 
not surprisingly, the date on which the swap is transacted. The terms of 
the trade include the fi xed interest rate, the maturity and notional amount 
of the swap, and the payment bases of both legs of the swap. Most swaps 
tie the fl oating-rate payments to LIBOR, although other reference rates 
are used, including the U.S. prime rate, euribor, the Treasury bill rate, and 
the commercial paper rate. The dates on which the fl oating rates for a pe-
riod are determined are the setting dates, the fi rst of which may also be the 
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trade date. As for forward-rate-agreement (FRA) and Eurocurrency de-
posits, the rate is fi xed two business days before the interest period begins. 
Interest on the swap is calculated from the effective date, which is typically 
two business days after the trade date.  

Although for the purposes of explaining swap structures both parties 
are said to pay and receive interest payments, in practice only the net dif-
ference between both payments changes hands at the end of each interest 
period. This makes administration easier and reduces the number of cash 
fl ows for each swap. The fi nal payment date falls on the maturity date of 
the swap. Interest is calculated using equation (7.1).

 I M r n
B

= × ×  (7.1)

where
I = the payment amount 
M = the swap’s notional principal 
B = the day-count base for the swap: actual/360 for dollar and euro-

denominated swaps, actual/365 for sterling swaps
r = the fi xed rate in effect for the period
n = the number of days in the period 

FIGURE 7.1  Cash Flows Resulting from a Long Position in a
3-Year FRN and a Short Position in a 3-Year 
6 Percent Treasury

  PERIOD (6 MOS) FRN GILT NET CASH FLOW

0  –£100m  +£100m £0

1  +(LIBOR x 100)/2 –3  +(LIBOR x 100)/2 – 3.0

2  +(LIBOR x 100)/2 –3  +(LIBOR x 100)/2 – 3.0

3  +(LIBOR x 100)/2 –3  +(LIBOR x 100)/2 – 3.0

4  +(LIBOR x 100)/2 –3  +(LIBOR x 100)/2 – 3.0

5  +(LIBOR x 100)/2 –3  +(LIBOR x 100)/2 – 3.0

6  +[(LIBOR x 100)/2] + 100 –103  +(LIBOR x 100)/2 – 3.0

The LIBOR rate is the six-month rate prevailing at the time of the setting, for in-
stance, the LIBOR rate at period 4 will be the rate actually prevailing at period 4.
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FIGURE 7.2 illustrates the cash fl ows from a plain vanilla interest rate 
swap, indicating infl ows with arrows pointing up and outfl ows with 
downward-pointing ones. The net fl ows actually paid out are also shown. 

Swap Spreads and the Swap Yield Curve
Pricing a newly transacted interest rate swap denotes calculating the 
swap rate that sets the net present value of the cash fl ows to zero. Banks 
quote two-way swap rates on screens or over the telephone or through 
dealing systems such as Reuters. Brokers also relay prices in the market. 
The convention is for the swap market maker to set the fl oating leg at 
LIBOR and quote the fi xed rate that is payable for a particular maturity. 
For a 5-year swap, for example, a bank’s swap desk might quote the fol-
lowing:

Floating-rate payer: pay 6-month LIBOR
 receive a fi xed rate of 5.19 percent

FIGURE 7.2   Cash Flows for a Plain Vanilla Interest Rate Swap

(i) Cash flows for fixed-rate payer

(ii) Cash flows for floating-rate payer

(iii) Net cash flows

Fixed payments               Floating payments
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Fixed-rate payer: pay a fi xed rate of 5.25 percent
 receive 6-month LIBOR

In this example, the bank is quoting an offer rate of 5.25 percent, which 
is what the fi xed-rate payer will pay, and a bid rate of 5.19 percent, which 
is what the fl oating-rate payer will receive. The bid-offer spread is therefore 
6 basis points. The fi xed rate is always set at a spread over the government 
bond yield curve and is often quoted that way. Say the 5-year Treasury is 
trading at a yield of 4.88 percent. The 5-year swap bid and offer rates in 
the example are 31 basis points and 37 basis points, respectively, above 
this yield, and the bank’s swap trader could quote the swap rates as a swap 
spread: 37–31. This means that the bank would be willing to enter into 
a swap in which it paid 31 basis points above the benchmark yield and 
received LIBOR or one in which it received 37 basis points above the yield 
curve and paid LIBOR. 

A bank’s swap screen on Bloomberg or Reuters might look some-
thing like FIGURE 7.3. The fi rst column represents the length of the 
swap agreement, the next two are its offer and bid quotes for each 
maturity, and the last is the current bid spread over the government 
benchmark bond. 

The swap spread is a function of the same factors that infl uence other 
instruments’ spreads over government bonds. For swaps with durations 
of up to three years, other yield curves can be used in comparisons, 
such as the cash-market curve or a curve derived from futures prices. 
The spreads of longer-dated swaps are determined mainly by the credit 
spreads prevailing in the corporate bond fi xed- and fl oating-rate markets. 
This is logical, since the swap spread essentially represents a premium 
compensating the investor for the greater credit risk involved in lending 

FIGURE 7.3  Swap Quotes

1YR 4.50 4.45 +17

2YR 4.69 4.62 +25

3YR 4.88 4.80 +23

4YR 5.15 5.05 +29

5YR 5.25 5.19 +31

10YR 5.50 5.40 +35
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to corporations than to the government. Day-to-day fl uctuations in swap 
rates often result from technical factors, such as the supply of corporate 
bonds and the level of demand for swaps, plus the cost to swap traders of 
hedging their swap positions.

In summary, swap spreads over government bonds refl ect the supply 
and demand conditions of both swaps and government bonds, as well as 
the market’s view on the credit quality of swap counterparties. Consider-
able information is contained in the swap yield curve, as it is in the gov-
ernment bond yield curve. When the market has credit concerns—as it 
did in 1998, during the corrections in Asian and Latin American markets, 
and in September 1998, when fears arose about the Russian government’s 
defaulting on its long-dated U.S.-dollar bonds—a “fl ight to quality” 
increases the swap spread, particularly at the longer maturities. During 
the second half of 1998, in reaction to bond market volatility around the 
world brought about by the concerns and events mentioned, the U.K. 
swap spread widened, as did the spread between 2- and 10-year swaps, 
refl ecting market worries about credit and counterparty risk. Spreads nar-
rowed in the fi rst quarter of 1999, as credit concerns sparked by the 1998 
market corrections declined. The evolution of the 2- and 10-year swap 
spreads is shown in FIGURE 7.4. 
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Generic Swap Valuation
Banks generally use par or zero-coupon swap pricing, which is discussed 
in detail in the next section. This section introduces the subject with a 
description of intuitive swap valuation.

Intuitive Swap Valuation
Consider a plain vanilla interest rate swap with a notional principal of M 
that pays n interest payments through its maturity date, T. Payments are 
made on dates ti, where i = 1, …n. The present value today of a future 
payment made at time ti is denoted as PV (0, ti). If the swap rate is r, the 
present value of the fi xed-leg payments, PVfi xed, is given by equation (7.2).
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where 
B = the money market day base
t ti i− −1 = the number of days between the ith and the i-1th payments 

The value of an existing swap’s fl oating-leg payments on date t1 is given 
by equation (7.3).
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where
rl = the LIBOR rate for the next interest payment 

The present value at time 0 of the fl oating-rate payment is given by 
equation (7.4).
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For a new swap, the present value as of t1 of the fl oating payments is 
given by equation (7.5). 
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The swap valuation is equal to PV PVfixed float− . The swap rate quoted 
by a market-making bank, known as the par or zero-coupon swap rate, is 
the rate for which PV PVfixed float= .
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Zero-Coupon Swap Valuation
As discussed above, vanilla swap rates are often quoted as a spread that 
is a function mainly of the credit spread required by the market over the 
risk-free government rate. This convention is logical, because government 
bonds are the principal instrument banks use to hedge their swap books. 
It is unwieldy, however, when applied to nonstandard tailor-made swaps, 
each of which has particular characteristics that call for particular spread 
calculations. As a result, banks use zero-coupon pricing, a standard meth-
od that can be applied to all swaps. 

As explained in chapter 3, zero-coupon, or spot, rates are true interest 
rates for their particular terms to maturity. In zero-coupon swap pric-
ing, a bank views every swap, even the most complex, as a series of cash 
fl ows. The zero-coupon rate for the term from the present to a cash fl ow’s 
payment date can be used to derive the present value of the cash fl ow. 
The sum of these present values is the value of the swap. 

Calculating the Forward Rate from Spot-Rate Discount Factors 
A swap’s fi xed-rate payments are known in advance, so deriving their pres-
ent values is a straightforward process. In contrast, the fl oating rates, by 
defi nition, are not known in advance, so the swap bank predicts them us-
ing the forward rates applicable at each payment date. The forward rates 
are those that are implied from current spot rates. These are calculated 
using equation (7.6). 
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where
rfi = the one-period forward rate starting at time i
dfi = the discount factor for the term from the present to time i 
dfi+1 = the discount factor for the period i + 1
N = the number of times per year that coupons are paid 

Although the term zero-coupon rate refers to the interest rate on a dis-
count instrument that pays no coupon and has one cash fl ow at maturity, 
constructing a zero-coupon yield curve does not require a functioning 
zero-coupon bond market. Most fi nancial pricing models use a combina-
tion of the following instruments to construct zero-coupon yield curves:

❑ Money market deposits
❑ Interest rate futures
❑ Government bonds
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Frequently an overlap in the maturity period of all these instruments 
is used; FRA rates are usually calculated from interest rate futures, so only 
one or the other is needed.

Once a zero-coupon yield curve is derived, it can be used to derive the 
forward rates, using equation (7.6), which in turn are used to estimate the 
fl oating payments. These, together with their fi xed counterparts, can then 
be present valued using the zero-coupon yield curve. In valuing an interest 
rate swap, each of the cash fl ows is present-valued using the zero-coupon 
rates, and the results are added together. The swap’s present value is the 
difference between the present values of its fi xed- and fl oating-rate legs. 

Remember that one way to view a swap is as a long position in a fi xed-
coupon bond that is funded by taking out a LIBOR loan or shorting a 
fl oating-rate bond. The holder of such a position would pay a fl oating rate 
and receive the fi xed rate. In the arrangement where the long position in 
the fi xed-rate bond is funded with a fl oating-rate loan, the principal cash 
fl ows cancel out, assuming the bond was purchased at par, since they are 
equal and opposite. That leaves a collection of cash fl ows that mirror those 
of an interest rate swap paying fl oating and receiving fi xed. Since the fi xed 
rate on an interest rate swap is the same as the coupon (and yield) of a 
bond priced at par, calculating the swap rate is the same as calculating the 
coupon for a bond to be issued at par.

Equation (7.7), used to derive the price of a bond paying semiannual 
coupons, can be solved for the coupon rate r. The result is equation (7.8), 
which can be simplifi ed as shown and used to derive the par yield and so 
the swap rate r.
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where 
rn = the coupon rate on an n-period bond with n coupons
M = the maturity payment 

And, since P is assumed to be par, M = P. 

 (7.8)
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Expression (7.8) is for bonds paying semiannual coupons. It can 
be generalized to apply to bonds whose coupon frequency is N, where 
N = 1 (for an annual coupon payment) to 12, and replacing 2 in the 
discount factor’s denominator with N 1. Solving (7.8) thus modifi ed for 
the nth discount factor results in equation (7.9). 
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where
N = the number of coupon payments per year

Expression (7.9) formalizes the bootstrapping process described in 
chapter 3. Essentially, the n-year discount factor is computed using the 
discount factors for years one to n-1 and the n-year swap or zero-coupon 
rate. Given the discount factor for any period, that period’s zero-coupon, 
or spot, rate can be derived using (7.9) rearranged as (7.10).
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where
rsn  = the spot rate for period n 
tn = time in period 

The relationship between discount factors and the spot rates for the 
same periods can be used to calculate forward rates. Say the spot rate for 
period 1 is known. The corresponding discount rate can be derived using 
(7.9), which reduces to (7.11). 
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From this, the discount rate for the next period can be computed, 
using the forward rate, as shown in (7.12).

 
df df

rf
N

2
1

11
=

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟  (7.12)

where
rf1 = the forward rate



116                               Selected Cash and Derivative Instruments

This can be generalized to form an expression, (7.13), that calculates the 
discount factor for any period, n +1, given the discount rate for the previous 
period, n, and the forward rate, rfn, for the period n to n+1. Expression 
(7.13) can then be rearranged as (7.14), to solve for the forward rate
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The general expression for deriving an n-period discount rate at time n 
from the previous periods’ forward rates is (7.15).
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Equations (7.8) and (7.14) can be combined to obtain (7.16) and 
(7.17), the general expressions for, respectively, an n-period swap rate and 
an n-period zero-coupon rate.
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where

N = the frequency of coupon payments
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Equation (7.16) captures the insight that an interest rate swap can be 
considered as a strip of futures. Since this strip covers the same period as 
the swap, it makes sense that, as (7.16) states, the swap rate can be com-
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puted as the average of the forward rates from rf0 to rfn, weighted accord-
ing to the discount factor for each period. 

Note that although swap rates are derived from forward rates, a swap’s 
interest payments are paid in the normal way, at the end of an interest 
period, while FRA payments are made at the beginning of the period and 
must be discounted. 

Equation (7.17) states that the zero-coupon rate is the geometric aver-
age of one plus the forward rates. The n-period forward rate is obtained 
using the discount factors for periods n and n-1. The discount factor for 
the complete period is obtained by multiplying the individual discount 
factors together. Exactly the same result would be obtained using the zero-
coupon interest rate for the whole period to derive the discount factor.2

The Key Principles of an Interest Rate Swap
As noted earlier, pricing a newly transacted interest rate swap denotes cal-
culating the swap rate that sets the net present value of the cash fl ows to 
zero. Valuation signifi es the process of calculating the net present value of 
an existing swap by setting its fi xed rate at the current market rate. Con-
sider a plain vanilla interest rate swap with the following terms: 

Nominal principal $10,000,000
Day count fi xed Actual/360
Day count fl oating Actual/360
Payment frequency fi xed Annual 
Payment frequency fl oating Annual 
Trade date January 31, 2000
Effective date February 2, 2000
Maturity date February 2, 2005
Term Five years

Although in practice the fi xed payments would differ slightly from 
year to year, to simplify the pricing, assume that they are identical. Also 
assume that the relevant set of zero-coupon yields has been derived, as 
shown in the second column of FIGURE 7.5. These rates are used to cal-
culate the discount factors in the third column, which are then plugged 
into equation (7.14) to derive the forward rates in column four. These 
forward rates are used to predict what the fl oating-rate payments will be 
at each interest period. Both fi xed-rate and fl oating-rate payments are 
then present-valued at the appropriate zero-coupon rates their present 
values netted together.  The Excel formulae behind fi gure 7.5 are shown 
in FIGURE 7.6, on pages 124–125. The fi xed rate for the swap is calcu-
lated as follows, using equation (7.8):
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 r = 1 0 71298618
4 16187950
− .

.
 = 6.8963 percent

It is not surprising that the net present value is zero. The zero-coupon 
curve is used to derive the discount factors that are then used to derive 
the forward rates that are used to determine the swap rate. As with any 
fi nancial instrument, the fair value is its break-even price or hedge cost. 
The bank that is pricing this swap could hedge it with a series of FRAs 
transacted at the forward rates shown. This method is used to price any 
interest rate swap, even exotic ones. 

Valuation Using the Final Maturity Discount Factor
The fl oating-leg payments of an interest rate swap can be valued using just 
the discount factor for the fi nal maturity period and the notional principal. 
This short-cut method is based on the fact that the value of the fl oating-leg 
interest payments is conceptually the same as that of a strategy that consists 
of exchanging the notional principal at the beginning and end of the swap 
and investing it at a fl oating rate in between. In both cases, the net result is 
a collection of fl oating-rate interest payments. The principal plus the pay-
ments from investing it for the term of the swap must discount to the value 
of the principal at the beginning of the swap, and the appropriate discount 
value for this is the fi nal discount rate. 

To understand this principal, consider fi gure 7.5, which shows the 
present value of both legs of the 5-year swap to be $2,870,137. The same 
result is obtained by using the 5-year discount factor, as shown in (7.18).

FIGURE 7.5  Pricing a Plain Vanilla Interest Rate Swap

  PERIOD ZERO-COUPON RATE % DISCOUNT FACTOR FORWARD RATE % 

1 5.5 0.947867298 5.5 

2 6 0.88999644 6.502369605 

3 6.25 0.833706493 6.751770257 

4 6.5 0.777323091 7.253534951 

5 7 0.712986179 9.023584719 

  4.161879501  
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PVfloating = ×( )− ×( ) =10 000 000 1 10 000 000 0 71298618 2 870 13, , , , . , , 77  
 (7.18)

The fi rst term in (7.18) represents the notional principal multiplied 
by the discount factor 1. This refl ects the fact that the present value of an 
amount received immediately is the amount itself. 

Non–Plain Vanilla Interest Rate Swaps
The discussion so far has involved plain vanilla swaps. These have been 
shown to have the following characteristics:

❑  One leg pays a fi xed rate of interest; the other pays a fl oating rate, 
usually linked to a standard index such as LIBOR

❑ The fi xed rate is fi xed for the entire life of the swap
❑  The fl oating rate is set before the start of each payment period and 

paid in arrears
❑  Both legs have the same payment frequency (quarterly, semiannual, 

annual)
❑ The maturity is whole years, up to thirty
❑  The notional principal remains constant during the life of the swap

Each of these characteristics can be altered to meet particular customer 
demands. The resulting swaps are non–plain vanilla, or nongeneric.

A wide variety of swap contracts have been traded in the market. 
Although six-month LIBOR is the most common reference rate for the 

FIXED PAYMENT FLOATING PAYMENT PV FIXED PAYMENT PV FLOATING PAYMENT

689,625 550,000 653,672.99 521,327.01

689,625 650,236.96 613,763.79 578,708.58

689,625 675,177.03 574,944.84 562,899.47

689,625 725,353.50 536,061.44 563,834.02

689,625 902,358.47 491,693.09 643,369.12

  2,870,137 2,870,137
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fl oating-leg of a swap making semiannual payments, for example, three-
month LIBOR also has been used, as well as the prime rate (for dollar 
swaps), the one-month commercial paper rate, the Treasury bill rate, the 
municipal bond rate (again, for dollar swaps), and others. 

Swaps may also be extendable or putable. In an extendable swap, 
one of the parties has the right, but not the obligation, to extend the 
life of the swap beyond the fi xed maturity date. In a putable swap, one 
party has the right to terminate the swap ahead of the specifi ed maturity 
date. The fi xed rate would be adjusted to refl ect the cost of the implicit 
option. For example, if the fi xed payer has the right to extend the swap, 
the fi xed rate would be higher than for a plain vanilla swap with similar 
terms.  

A forward-start swap’s effective date is a considerable period—say, six 
months—after the trade date, rather than the usual one or two days. A 
forward start is used when one counterparty, perhaps foreseeing a rise in 
interest rates, wants to fi x the cost of a future hedge or a borrowing now. 
The swap rate is calculated in the same way as for a vanilla swap.

The fl oating leg of a margin swap pays LIBOR plus or minus a speci-
fi ed number of basis points. The swap’s fi xed-rate quote is adjusted to 
allow for this margin. Say a bank fi nances its fi xed-rate lending by bor-
rowing at 25 basis points over LIBOR. It may wish to receive LIBOR plus 
25 bps in a swap so that its cash fl ows match exactly. If the swap rate for 
the appropriate maturity is 6 percent, the margin swap’s fi xed leg would 
be fi xed at around 6.25 percent (the margins on the two legs may dif-
fer if their day-count conventions or payment frequencies are different). 
A fl oating-rate margin might also be dictated by the credit quality of the 
counterparty. A highly rated counterparty, for example, might pay slightly 
below LIBOR.

An off-market swap is one whose fi xed rate is different from the market 
swap rate. To compensate for this difference, one counterparty pays the 
other a sum of money. An off-market rate may be required for a particular 
hedge, or by a bond issuer that wants to cover the issue costs as well as 
hedge the loan.

In a basis swap both legs pay fl oating rates, but they are linked to dif-
ferent money market indexes. One is normally LIBOR, while the other 
might be the certifi cate-of-deposit or the commercial-paper rate. A U.S. 
bank that had lent funds at prime and fi nanced its loans at LIBOR might 
hedge the basis risk thus created with a swap in which it paid prime and 
received LIBOR. Both legs of a basis swap may be linked to LIBOR rates, 
but for different maturities. In such a swap, the payment frequencies of the 
two legs also differ. One counterparty, for instance, might pay 3-month 
LIBOR quarterly, while the other pays 6-month LIBOR semiannually. 
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Note that this situation exposes one party to greater risk that the coun-
terparty will default on payments. For instance, a party paying monthly 
and receiving semiannual cash fl ows will have made fi ve interest payments 
before receiving one in return. 

A constant maturity swap, or CMS, is a basis swap in which one leg is 
reset periodically not to LIBOR or some other money market rate but to a 
long-term rate, such as the current 5-year swap rate or 5-year government 
bond rate. For example, the counterparties to a CMS might exchange 
6-month LIBOR for the 10-year Treasury rate in effect on the reset date. 
In the U.S. market, a swap one of whose legs is reset to a government bond 
is referred to as a constant maturity Treasury, or CMT, swap. The other leg 
is usually tied to LIBOR, but may be fi xed or use a different long-term 
rate as its reference.

A differential swap is a basis swap in which one of the legs is calculated 
in a different currency. Typically, this leg is linked to a reference index rate 
for another currency but is denominated in the domestic currency. For 
example, one party might pay 6-month sterling LIBOR, in sterling, on a 
notional principal of $10 million and receive euro-LIBOR minus a mar-
gin, in sterling, on the same notional principal. Differential swaps are not 
very common and are the most diffi cult for a bank to hedge.

In an accreting, or step-up, swap, the notional principal increases over 
the life of the swap; in an amortizing swap, the principle decreases. Swaps 
whose notional principal fl uctuates—increasing one year and decreasing 
the next, for example—are known as roller coasters. 

An accreting swap might be used by an institution trying to hedge 
a funding liability expected to grow. An amortizing swap might be em-
ployed to hedge an amortizing loan or a bond with a sinking fund feature. 
It frequently has a forward-start feature, synchronized with the cash fl ows 
payable on the loan. In principle, amortizing and accreting swaps are 
priced and valued in the same way as plain vanilla ones.

In a LIBOR-in-arrears, or back-set, swap, the fl oating rate is set just 
before the end of the payment period, rather than just before the start. 
Such a swap would be attractive to a counterparty with a view on interest 
rates that differed from the market consensus. In an upward-sloping yield 
curve, for instance, forward rates are higher than current market ones, and 
this is refl ected in swap pricing. Floating-rate payers believing that inter-
est rates will rise more slowly than forward rates (and the market) suggest 
might enter into a LIBOR-in-arrears swap, which would be priced higher 
than a conventional one.
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Swaptions
A bank or corporation may buy or sell an option on a swap, known as a 
swaption. The buyer of a swaption has the right, but not the obligation, to 
transact an interest rate swap during the life of the option. An option on 
a swap where the buyer is the fi xed-rate payer is termed a call swaption; 
one where the buyer becomes the fl oating-rate payer is a put swaption. The 
writer of the swaption becomes the buyer’s counterparty in underlying the 
transaction.

Swaptions are similar to forward-start swaps, except that the buyer can 
choose not to commence payments on the effective date. A bank may pur-
chase a call swaption if it expects interest rates to rise; it will exercise only 
if rates do indeed rise. A company may use swaptions to hedge future in-
terest rate exposures. Say it plans to take out a fi ve-year bank loan in three 
months. This transaction will make the company liable for fl oating-rate 
interest payments, which are a mismatch for the fi xed-rate income it earns 
on the long-term mortgages on its books. To correct this mismatch, the 
company intends to transact a swap in which it receives LIBOR and pays 
fi xed after getting the loan. To hedge against an unforeseen rise in interest 
rates in the meantime, which would increase the swap rate it has to pay, it 
may choose to purchase an option, expiring in three months, on a swap in 
which it pays a fi xed rate of, say, 10 percent. 

If the 5-year swap rate is above 10 percent in three months, after the 
company has taken out its loan, it will exercise the swaption. If the rate 
is below 10 percent, however, it will transact the swap in the normal way, 
and the swaption will expire worthless. The swaption thus enables a com-
pany to hedge against unfavorable movements in interest rates but also to 
gain from favorable ones. There is, of course, a cost associated with this 
benefi t: the swaption premium.

Valuation
Since a fl oating-rate bond is valued on its principal value at the start of a 
swap, a swaption may be viewed as the value on a fi xed-rate bond, with a 
strike price that is equal to the face value of the fl oating-rate bond.

Swaptions are typically priced using the Black-Scholes or the Black 
pricing model. With a European swaption, the appropriate swap rate on 
the expiry date is assumed to be lognormal. The swaption payoff is given 
by equation (7.19).

 
Payoff = −( )M

F
r rnmax ,0

 (7.19)
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where 
rn = the strike swap rate
r = the actual swap rate at expiry
n = the swap’s term
M = the notional principal
F = the swap payment frequency

The Black model uses equation (7.20) to derive the price of an interest 
rate option.

 c P T f N d XN d= ( ) ( )− ( )⎡
⎣⎢

⎤
⎦⎥0 0 1 2,  (7.20)

where
c = the price of the call option 
P (t, T ) = the price at time t of a zero-coupon bond maturing at time T
f = the forward price of the underlying asset with maturity T
ft = the forward price at time t 
X = the strike price of the option
N = normal distribution

and where
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σ = the volatility of f

Equation (7.20) can be combined with (7.19) to form (7.21), which 
derives the value of a swap cash fl ow received at time ti.

 

M
F
P t f N d r N di n0 0 1 2,( ) ( )− ( )⎡

⎣⎢
⎤
⎦⎥  (7.21)

where 
f0 = the forward swap rate at time 0
ri = the continuously compounded zero-coupon interest rate for an 

instrument with maturity ti 

From (7.21), equation (7.22) can be constructed to derive the total 
value of the swaption. 
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Interest Rate Swap Applications
This section discusses how swaps are used to hedge bond instruments and 
how swap books are themselves hedged. 

Corporate and Investor Applications
As noted earlier, swaps can be tailored to suit a user’s requirements. For ex-
ample, swaps’ payment dates, payment frequencies, and LIBOR margins 
are often specifi ed to match customers’ underlying exposures. Because the 
market is so large, liquid, and competitive, banks are willing to structure 
swaps to meet the requirements of virtually all customers, although smaller 
customers may have diffi culty obtaining competitive quotes for notional 
values below $10 million.

FIGURE 7.6  Excel Formulae for Figure 7.5

CELL C D E F 

21   10000000

22

  23 PERIOD ZERO-COUPON RATE % DISCOUNT FACTOR FORWARD RATE % 

24 1 5.5 0.947867298 5.5 

25 2 6 0.88999644 “((E24/E25)-1)*100 

26 3 6.25 0.833706493 “((E25/E26)-1)*100 

27 4 6.5 0.777323091 “((E26/E27)-1)*100 

28 5 7 0.712986179 “((E27/E28)-1)*100 

   “SUM(E24:E28)  
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In terms of their applications, swaps generally fall into two categories: 
those linked to assets and those linked to liabilities. An asset-linked swap 
is used by investors to change the characteristics of the income stream 
generated by an asset, such as a bond. Liability-linked swaps are used by 
borrowers to change the pattern of their cash fl ows. Of course, the assign-
ment of a swap to one of these categories depends on the point of view of 
the assignor. What is an asset-linked swap for one party is a liability-linked 
hedge for the counterparty, except in the case of market-making banks 
that make two-way quotes on the instruments.

One straightforward application of an interest rate swap is to convert 
a fl oating-rate liability into a fi xed-rate one, usually in an effort to remove 
exposure to upward moves in interest rates. Say a company has borrowed 
money at a fl oating rate of 100 basis points over 6-month LIBOR. Fear-
ing that interest rates will rise in the three years remaining on the loan, it 
enters into a 3-year semiannual interest rate swap with a bank, depicted 
in FIGURE 7.7 on the following page, in which it pays a fi xed rate of 6.75 
percent and receives 6-month LIBOR. This fi xes the company’s borrowing 
costs for three years at 6.75 percent plus 100 basis points, or 7.75 percent, 
for an effective annual rate of 7.99 percent. 

G H I J

FIXED PAYMENT FLOATING PAYMENT PV FIXED PAYMENT PV FLOATING PAYMENT

689,625 “(F24*10000000)/100 “G24/1.055 “H24/(1.055)

689,625 “(F25*10000000)/100 “G24/(1.06)^2 “H25/(1.06)^2

689,625 “(F26*10000000)/100 “G24/(1.0625)^3 “H26/(1.0625^3)

689,625 “(F27*10000000)/100 “G24/(1.065)^4 “H27/(1.065)^4

689,625 “(F28*10000000)/100 “G24/(1.07)^5 “H28/(1.07)^5

  2,870,137 2,870,137
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Say a corporation borrows funds for fi ve years at a rate of 6.25 
percent. Shortly after taking out the loan, it enters into a swap in 
which it pays a fl oating rate of LIBOR and receives 5.85 fi xed (see 
FIGURE 7.8). Its net borrowing cost is thus LIBOR plus 40 basis points 
(6.25 minus 5.85). After one year, interest rates have fallen, and the 
4-year swap rate is quoted at 4.90–84 percent—that is, banks are willing 
to receive 4.90 or pay 4.84 fi xed. The company decides to take advantage 
of the lower interest rates by switching back to a fi xed-rate liability. To 
this end, it enters into a second swap in which it pays 4.90 percent fi xed 
and receives LIBOR. Its borrowing cost is now 5.30 percent (4.90 plus 
40 basis points), or 95 basis points—the difference between the two swap 
rates—below its original borrowing cost.

Investors might use asset-linked swaps if they want fi xed-rate securi-
ties, and the only assets available with the required credit quality and 
terms pay fl oating rates. For instance, a pension fund may have invested 
in 2-year fl oating-rate gilts, an asset of the highest quality, that pay 5.5 
basis points below the London interbank bid rate, or LIBID (the interest 
rate at which a bank in the City of London is willing to borrow short 
term from another City bank). As it is expecting interest rates to fall, 
however, it prefers to receive a fi xed rate. Accordingly, it arranges a tai-
lor-made swap in which it pays LIBID and receives a fi xed rate of 5.50 
percent. By entering into this swap, the pension fund creates a structure, 
shown on page 128 in FIGURE 7.9, that generates a fi xed-income stream 
of 5.375 percent. 

FIGURE 7.7    Transforming a Liability from Fixed Rate to Floating 
and Back to Fixed

Two-Swap Structure

LIBOR (L)

6.75%

L + 100bp

Bank Loan Company
Swap 

Counterparty
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Hedging Bond Instruments Using Interest Rate Swaps
Bond traders wishing to hedge the interest rate risk of their bond posi-
tions have several tools to choose from, including other bonds, bond fu-
tures, and bond options, as well as swaps. Swaps, however, are particularly 
effi cient hedging instruments, because they display positive convexity. As 
explained in chapter 2, this means that they increase in value when inter-
est rates fall more than they lose when rates rise by a similar amount—just 
as plain vanilla bonds do.

The primary risk measure required when using a swap to hedge is the 
present value of a basis point. PVBP, known in the U.S. market as the 
dollar value of a basis point, or DVBP, indicates how much a swap’s value 
will move for each basis point change in interest rates and is employed to 
calculate the hedge ratio. PVBP is derived using equation (7.23).

 
PVBP dS

dr
=

 (7.23) 
where 

dS = change in swap value
dr = change in market interest rate, in basis points

It was suggested earlier that a swap be seen as a bundle of cash fl ows 
arising from the sale and purchase of two cash-market instruments: a 

FIGURE 7.8   Swap Transforming a Floating-Rate Asset to a 
Fixed-Rate One

5.85%

LIBOR

6.25%

4.90                             LIBOR

Lenders Company

Second Swap 
(4-year)

First Swap 
(5-year)
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fi xed-rate bond with a coupon equal to the swap rate and a fl oating-rate 
bond with the same maturity and paying the same rate as the fl oating 
leg of the swap. Considering a swap in this way, equation (7.23) can be 
rewritten as (7.24).

 
PVBP d

dr
d

dr
= −

Fixed bond Floating bond

 (7.24)

Equation (7.24) essentially states that PVBP of the swap equals the 
difference between the PVBPs of the fi xed- and fl oating-rate bonds. This 
value is usually calculated for a notional principal of $1 million, based on 
the duration and modifi ed duration of the bonds (defi ned in chapter 2) 
and assuming a parallel shift in the yield curve. 

FIGURE 7.10 illustrates how the PVBP of a 5-year swap may be cal-
culated using the relationships expressed in (7.23) and (7.24). The two 
derivations are shown in equations (7.25) and (7.26), respectively. (Bonds’ 
PVBPs can be calculated using Bloomberg’s YA screen or Microsoft Excel’s 
MDURATION function.) 

 
PVBP dS

drswap = =
− −( )

=
4264 4236

20
425

 (7.25)

 

PVBP PVBP PVBPswap fixed floating= −

=
−

               
1004940 9951171

20
1000640 999371

20
−

−

=               488.45-63.45

                425.00=  (7.26)

FIGURE 7.9   Transforming a Floating-Rate Asset to a 
Fixed-Rate One 

5.50%

LIBIDLIBID–12.5

Gilt Local 
Authority 2-Year Swap
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Note that the swap PVBP, $425, is lower than that of the 5-year fi xed-
coupon bond, which is $488.45. This is because the fl oating-rate bond 
PVBP reduces the risk exposure of the swap as a whole by $63.45. As a 
rough rule of thumb, the PVBP of a swap is approximately the same as 
that of a fi xed-rate bond whose term runs from the swap’s next coupon 
reset date through the swap’s termination date. Thus, a 10-year swap mak-
ing semiannual payments has a PVBP close to that of a 9.5-year fi xed-rate 
bond, and a swap with 5.5 years to maturity has a PVBP similar to that of 
a 5-year bond.

One corollary of the relationship expressed in (7.25) is that swaps’ 
PVBPs behave differently from those of bonds. Immediately preceding 
a reset date, when the PVBP of the fl oating-rate bond corresponding to 
the swap’s fl oating leg is essentially nil, a swap’s PVBP is almost identical 
to that of the fi xed-rate bond maturing on the same day as the swap. For 
example, if it’s a fi ve-year swap, and it’s just before the second semiannual 
payment, the PVBP will be similar to that of a four-year bond. Immedi-
ately after the reset date the swap’s PVBP will be nearly identical to that of 

FIGURE 7.10  PVBPs of a 5-Year Swap and a Fixed-Rate Bond 
with the Same Maturity Date

  INTEREST RATE SWAP

Term to maturity 5 years

Fixed leg 6.50%

Basis Semi-annual, act/365

Floating leg 6-month LIBOR

Basis Semi-annual, act/365

Nominal amount $1,000,000

  Present value $

 Rate change – 10 bps 0 bps Rate change + 10 bps

Fixed-coupon bond 1,004,940 1,000,000 995,171

Floating-rate bond 1,000,640 1,000,000 999,371

Swap 4,264 0 4,236



130                               Selected Cash and Derivative Instruments

a bond maturing at the next reset date. Therefore, from a point just before 
the reset to one just after, the swap’s PVBP will decrease by the amount of 
the fl oating-rate PVBP. In between reset dates, the swap’s PVBP is quite 
stable, since the effects of changes in the fi xed- and fl oating-rate PVBPs 
cancel each other out. In contrast, a fi xed-rate bond’s PVBP decreases 
steadily over time, assuming that no sudden large-scale yield movements 
occur. The evolution of the swap and bond PVBPs is illustrated in FIGURE 
7.11. Note that the graph does not refl ect a slight anomaly that occurs in 
the swap’s PVBP, which actually increases by a small amount between reset 
dates because the fl oating-rate bond’s PVBP decreases at a slightly faster 
rate than that of the fi xed-rate bond. 

Hedging a bond with an interest rate swap is conceptually similar to 
hedging it with another bond or with bond futures. Hedging a long posi-
tion in a vanilla bond requires a long position in the swap—that is, taking 
the side that pays fi xed and receives fl oating. Hedging a short position in a 
bond requires a short swap position, matching the fi xed swap income with 
the pay-fi xed liability of the short bond position. 

The swap’s value will change by approximately the same amount, but 
in the opposite direction, as the bond’s value. The match will not be exact. 
It is very diffi cult to establish a precise hedge for a number of reasons, in-
cluding differences in day count and in maturity, and basis risk. To mini-
mize the mismatch, the swap’s maturity should be as close as possible to 

 FIGURE 7.11   PVBP of a 5-Year Swap and Fixed-Rate Bond 
Maturity Period
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the bond’s. Since swaps are OTC contracts, it should be possible to match 
interest-payment dates as well as maturity dates. 

The correct nominal amount of the swap is established using the 
PVBP hedge ratio, shown as equation (7.27). Though the market still 
uses this method, its assumption of parallel yield-curve shifts can lead to 
signifi cant hedging error.

 
Hedge ratio =

PVBP
PVBP

bond

swap  (7.27)

Chapter Notes 

1. The expression also assumes an actual/365 day count. If any other day-count conven-
tion is used, the 1/N factor must be replaced by a fraction whose numerator is the actual 
number of days and whose denominator is the appropriate year base.

2. Zero-coupon and forward rates are also related in another way. If the zero-coupon rate 
rsn and the forward rate rfi are transformed to their continuously compounded equivalent 
rates, ln(1 + rsn) and ln(1 + rfi ), the result is the following expression, which derives the 
continuously compounded zero-coupon rate as the simple average of the continuously 
compounded forward rates:
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Options

C H A P T E R  8

Options were originally written on commodities such as wheat and 
sugar. Today investors can buy or sell options on a wide range of 
underlying instruments in addition to commodities, including 

fi nancial products such as foreign exchange rates, bonds, equities, and 
derivatives such as futures, swaps, and equity indexes. Contracts on com-
modities are known as options on physicals; those on fi nancial assets are 
known as fi nancial options. 

The spectrum of trading combinations and structured products in-
volving options is constrained only by imagination and customer require-
ments. Virtually all participants in capital markets have some requirement 
that may be met by using options. Market makers, for instance, use op-
tions for speculation and arbitrage, to generate returns. One of the most 
important uses of options, however, is as hedging tools.

Options are unique among hedging instruments in enabling banks 
and corporations to profi t from upside market moves while covering 
their risk exposures. The contracts also have special characteristics that set 
them apart from other classes of derivatives. Because they confer the right 
to conduct a transaction without imposing an obligation to do so, they 
need be exercised only if the protection they offer is required. Options 
thus function more like insurance policies than like pure hedging instru-
ments. The option price is in effect an insurance premium paid for peace 
of mind. 

A number of specialized texts are devoted to options. This chapter 
introduces the basics, including the complex topic of pricing. Chapter 
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9 looks at the main sensitivity measures employed in running an option 
book and the uses to which these instruments may be put. For further 
reading, see the articles and books listed in the References section.

Option Basics 
An option is a contract between a buyer and a seller in which the buyer 
has the right, but not the obligation, to purchase (in the case of a call op-
tion) or sell (in the case of a put option) a specifi ed underlying asset at a 
specifi ed price during or at the end of a specifi ed period. The option seller, 
or writer, grants this right in return for the option price, or premium. The 
option buyer is long the contract; the seller is short. 

An option’s payoff profi le is unlike that of any other instrument. Com-
pare, for instance, the profi les of a vanilla call option and of a vanilla bond 
futures contract. Traders who buy one lot of the bond futures at 114 and 
hold it for a month before selling it realize a profi t if the contract’s price 
at the end of the month is above 114 and a loss if it is below 114. The 
amount of the gain or loss is $1,000 for each point above or below 114. 
The same applies in reverse to those with short positions in the futures 
contract. The futures’ payoff profi le is thus linear, for both the long and 
the short position. This is illustrated in FIGURE 8.1.

Other derivatives, such as forward-rate agreements and swaps, have 
similar profi les, as, of course, do cash instruments such as bonds and 

FIGURE 8.1  Payoff Profile for a Bond Futures Contract
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stocks. Options break the pattern. Because these contracts confer a right 
but impose no obligation on their holders and impose an obligation but 
confer no right on their sellers, the payoff profi les for the two parties 
are different. If, instead of the futures contract itself, the traders in the 
previous example take long and short positions in a call option on the 
contract at a strike price of 114, their payoff profi les will be those shown 
in FIGURE 8.2.

Should the price of the futures contract rise above 114 during the life 
of the option, the traders long the call will exercise their right to buy the 
future. Should the price of the future never rise above 114, these traders 
will not exercise, and the option will eventually expire worthless and they 
will suffer a loss in the amount of the premium they paid. In fact, they 
don’t realized a profi t until the contract rises above 114 by the amount of 
the premium. In this respect it is exactly like an equity or bond warrant. 
The option sellers have a very different payout profi le. If the price of the 
future rises above 114 and the option is exercised, they bear a loss equal to 
the profi t the buyers make. If the option expires without being exercised, 
the sellers keep the premium income.

This example illustrates that the holders of long and short positions in 
options, unlike holders of other fi nancial instruments, have asymmetrical 
payoff profi les. Call option buyers benefi t if the price of the underlying 
asset rises above the strike by at least the amount of the premium but lose 

FIGURE 8.2  Payoff Profiles for Long and Short Positions in a 
Call Option Contract
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only what they paid for the option if it fails to do so. The option sellers 
suffer a loss if the price of the underlying asset rises above the strike by 
more than the premium amount but realize only the funds received for 
writing the option if it fails to do so. 

Traders who wish to benefi t from a fall in the market level but don’t 
want to short the market might buy put options. Put options have the 
same asymmetrical payoff profi les for buyers and sellers as call options, 
but in the opposite direction. Put buyers profi t if the market price of the 
underlying asset falls below the strike but lose only the premium they 
paid if the price remains above the strike. Put writers do not profi t from 
moves in the underlying, whatever direction these moves take, and lose if 
the market falls below the strike by more than the premium amount. The 
premium they earn on the option sale is their compensation for taking on 
this risk.

Terminology 
When an option is exercised, the option writer will deliver the asset or the 
cash value of the profi t to the buyer. An option trader can take any of the 
following four positions:

1 Long a call 
2 Long a put
3 Short a call 
4 Short a put 

FIGURE 8.3 shows the payoff profi les for these positions.  
The strike price is the price of the underlying asset at which the option 

is exercised. For example, a call option to buy ordinary shares of a listed 
company might have a strike price of $10, meaning that the underlying 
stock can be bought at $10 a share by exercising the contract. Options that 

FIGURE 8.3  Basic Option Payoff Profiles 
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can be exercised anytime from the day they are struck up to and including 
the expiry date are called American options. Those that can be exercised 
only on the expiry date are known as European options. The terms have 
no geographic relevance; both styles of trade can be used in any market. 
Bermudan options, which can be exercised on any of a set of specifi ed 
dates, also exist.1 It is very rare for an American option to be exercised 
ahead of its expiry date, so this distinction has little impact in practice. 
Pricing models developed for European options, however, must be modi-
fi ed to handle American ones. 

The option premium has two constituents: intrinsic value and time 
value. Intrinsic value equals the difference between the strike price and 
the underlying asset’s current price. It is what the option’s holders would 
realize if they were to exercise it immediately. Say a call option on a bond 
futures contract has a strike price of $100 and the contract is trading at 
$105. A holder who exercises the option, buying the futures at $100 and 
selling the contract immediately at $105, earns a profi t of $5; that is the 
option’s intrinsic value. A put option’s intrinsic value is the amount by 
which the current underlying asset’s price is below the strike. Because an 
option holder will exercise it only if there is a benefi t to so doing, the in-
trinsic value will never be less than zero. Thus, if the bond future in the 
example were trading at $95, the intrinsic value of the call option would 
be zero, not –5. 

An option that has intrinsic value is in the money. One with no intrin-
sic value is out of the money. An option whose strike price is equal to the 
underlying’s current price is at the money. This term is normally used only 
when the option is fi rst traded.

The time value of an option is the amount by which the option value 
exceeds the intrinsic value. Because of the risk they are taking on, illus-
trated in the payoff profi les above, option writers almost always demand 
premiums that are higher than the contracts’ intrinsic value. The value of 
an option that is out of the money is composed entirely of time value. Time 
value refl ects the potential for an option to move into, or more deeply into, 
the money before expiry. It diminishes up to the option’s expiry date, when 
it becomes zero. The price of an option on expiry is composed solely of 
intrinsic value. FIGURE 8.4 lists basic option market terminology.

Option Instruments
Options are traded both on recognized exchanges and over the counter 
(OTC). Exchange-traded options are standardized plain vanilla contracts; 
OTC options can take on virtually any form. Options traded on an ex-
change are often written on futures contracts. For example, a gilt option 
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on the London International Financial Futures and Options Exchange 
(LIFFE) is written on the exchange’s gilt futures contract. Exercising a fu-
tures option results in a long position in a futures contract being assigned 
to the option holder and a short position in the future being assigned to 
the option writer. Exchange-traded options on U.S. Treasuries are quoted 
in option ticks. 

FIGURE 8.4  Basic Option Terminology

Call The right to buy the underlying asset

Put The right to sell the underlying asset

Buyer  The person who has purchased the option and 
has the right to exercise it if she wishes

Writer  The person who has sold the option and has the 
obligation to perform if the option is exercised

Strike price  The price at which the option may be exercised, 
also known as the exercise price

Expiry date  The last date on which the option can be exer-
cised, also known as the maturity date

American  The style of option; an American option can be 
exercised at any time up to the expiry date

European  An option which may be exercised on the 
maturity date only, and not before

Premium  The price of the option, paid by the buyer to 
the seller

Intrinsic value  The value of the option if it was exercised 
today, which is the difference between the 
strike price and the underlying asset price

Time value  The difference between the current price of the 
option and its intrinsic value

In-the-money  The term for an option that has intrinsic value

At-the-money  An option for which the strike price is identical 
to the underlying asset price

Out-of-the-money An option that has no intrinsic value
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Both OTC and exchange-traded options can be either American or 
European. Exchange-traded options are available on the following instru-
ments:

❑ Shares of common stock. Major exchanges, including the New 
York Stock Exchange (NYSE), LIFFE, Eurex, the Chicago Board Options 
Exchange (CBOE), and the Singapore International Monetary Exchange 
(SIMEX), trade options on stock shares.

❑ Futures. Most exchanges trade options on the futures contracts 
that they trade. These options expire one or two days before the underly-
ing futures do. Some, such as those traded on the Philadelphia Currency 
Options Exchange, allow cash settlement. This means that when the hold-
ers of a futures call exercise it, they are assigned both a long position in the 
future and the cash value of the difference between the strike price and the 
futures price. 

❑ Stock indexes. Equity index options, such as the contracts on 
the Standard & Poor’s 500 Index traded on the CBOE and those on the 
FTSE-100 traded on LIFFE, are popular for both speculating and hedg-
ing. Settlement is in cash, not the shares that constitute the underlying 
index, much like the settlement of an index futures contract. 

❑ Bonds. Exchange-traded options on bonds are invariably written 
on the bonds’ futures contracts. One of the most popular exchange-traded 
options contracts, for example, is the Treasury bond option, which is writ-
ten on the Treasury futures contract and traded on the Chicago Board of 
Trade Options Exchange. Options written on actual bonds must be traded 
in the OTC market.

❑ Interest rates. All major exchanges write interest rate options on 
their 90-day interest rate futures contract.

❑ Foreign currency. Exchange-traded options on foreign currencies 
are rare. The major exchange trading them is the one in Philadelphia, 
which offers, for instance, a sterling option contract on an underlying 
amount of £31,250. The option gives the holder the right to buy or sell a 
given amount of the foreign currency at a given price per unit. A sterling 
call would give the holder the right to buy £31,250 for a certain dollar 
amount, which would be the strike price. 

Option trading on an exchange, like futures trading, involves the daily 
computation and transfer of margin. Each exchange has its own proce-
dures. On the LIFFE, for example, the option buyer pays no premium on 
the day the position is put on. Rather, the premium is paid via the daily 
variation margin, which refl ects the daily changes in the option price. The 
sum of all the variation margin payments made during the life of an op-
tion that expires with no intrinsic value equals the difference between the 
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contract’s value on the day it was traded and zero. On other exchanges, 
option buyers pay premiums on the day of purchase but no variation 
margin. Some exchanges allow traders to select either method. Margin is 
compulsory for option writers. 

In the OTC market, a large variety of instruments are traded. As with 
other OTC products, such as swaps, the great advantage of OTC options 
is that they can be tailored to meet each buyer’s requirements. Because 
of this fl exibility, corporations and fi nancial institutions can use them to 
structure hedges that perfectly match their risk exposures. 

Option Pricing: Setting the Scene
An option’s price is a function of the following six factors:

1 Its strike price
2 The current price of the underlying asset
3 The option’s time to expiry
4 The risk-free interest rate during the option’s life
5 The volatility of the underlying asset’s price
6  The value of any dividends or cash fl ows paid by the underlying 

asset during the option’s life

Possibly the two most important of these factors are the current price 
of the underlying and the option’s strike price. As noted above, the rela-
tionship between these two determines the option’s intrinsic value. The 
value of a call option thus rises and falls with the price of the underlying. 
And given several calls on the same asset, the higher the strike, the lower 
the option price. All this is reversed for a put option. 

For all options, the longer the time to maturity, generally, the higher 
the premium. All other parameters being equal, a longer-dated option is 
worth at least as much as one with a shorter life. This rule—always true for 
American options and usually true for European ones—makes intuitive 
sense: the longer the term to maturity, the more time the underlying asset 
has to move in a direction and by an amount that increases the option’s 
intrinsic value. Certain factors, however, may cause a longer-dated option 
to have only a slightly higher value than a shorter-dated one. 

One such factor is the coupon payments made by the underlying dur-
ing the option’s life. These payments reduce the price of the underlying 
asset on the ex-dividend date and so depress the price of a call option and 
boost that of a put.

A rise in interest rates increases the value of most call options. For stock 
options, this is because the equity markets view a rate increase as a sign 
that share price growth will accelerate. Generally, the relationship is the 
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same for bond options. Not always, however, since in the bond market, 
rising rates tend to depress prices, because they lower the present value of 
future cash fl ows. A rise in interest rates has the opposite effect on put op-
tions, causing their value to drop. The risk-free interest rate applicable to a 
bond option with a term to expiry of, say, three months is a three-month 
government rate—commonly the government bond repo rate for bond 
options, usually the T-bill rate for other types.

Limits on Option Prices
Setting option prices’ upper and lower limits is relatively straightforward 
since, like all security prices, they must obey the no-arbitrage rule. A call 
option grants the buyer the right to buy the underlying asset at the strike 
price. Clearly, therefore, it cannot have a higher value than the underlying 
asset. This relationship is expressed formally in (8.1).

 C ≤ S (8.1)

where 
C = the price of a call option
S = the current price of the underlying asset 

Similarly, a put option, which grants the buyer the right to sell the 
underlying at the strike price, can never have a value greater than the strike 
price. This is expressed formally in (8.2).

 P ≤ X (8.2)

where 
P = the price of the put option
X = the put option strike price

This rule applies to European put options on their expiry date as well 
as to American puts. This means that a put option cannot have a value 
greater than the present value of the strike price at expiry. This is expressed 
formally in (8.3).

 P Xe rT≤ −  (8.3)

where 
r = the risk-free interest rate applicable to the option’s term
T = the number of years in the option’s life



142                               Selected Cash and Derivative Instruments

The lower limit on an option’s price depends on whether or not the 
underlying asset pays dividends. Remembering that intrinsic value can 
never be less than zero, the lower bound on the price of a call option on a 
non-dividend-paying security is given by (8.4).

 C S Xe rT≥ −⎡
⎣

⎤
⎦

−max ,0  (8.4)

For put options on non-dividend-paying stocks, the lower limit is 
given by (8.5).

 P Xe SrT≥ −⎡
⎣

⎤
⎦

−max ,0  (8.5)

Since, as noted above, payment of a dividend by the underlying asset 
affects the option’s price, the formulas for the lower price bounds must 
be modifi ed for options on dividend-paying stocks as shown in (8.6) 
and (8.7).

 C S D XerT≥ − −  (8.6)

 P D Xe SrT≥ + −−  (8.7)

where 
D = the present value of the dividend payment made by the underly-

ing asset 

Option Pricing
The pricing of other interest rate products, both cash and derivatives, that 
was described in previous chapters used rigid mathematical principles. 
This was possible because what happens to these instruments at matu-
rity is known, allowing their fair values to be calculated. With options, 
however, the outcome at expiry is uncertain, since they may or may not 
be exercised. This uncertainty about fi nal outcomes makes options more 
diffi cult to price than other fi nancial market instruments.

Essentially, the premium represents the buyer’s expected profi t. Like 
insurance premiums, option premiums depend on how the option writers 
assess the likelihood of the payout equaling the premium. That, in turn, 
is a function of the probability of the option being exercised. An option’s 
price is, therefore, a function of the probability that it will be exercised, 
from which is derived an expected outcome and a fair value. 

The following factors infl uence an option’s price.
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❑ The strike price. Since the deeper in the money the option, the 
more likely it is to be exercised, the difference between the strike and the 
underlying asset’s price when the option is struck infl uences the size of the 
premium.

❑ The term to maturity. The longer the term of the option, the 
more likely it is to move into the money and thus be exercised.

❑ The level of interest rates. As noted above, the option premium, 
in theory, equals the present value of the gain the buyer expects to realize 
at exercise. The discount rate used therefore affects the premium, although 
it is less infl uential than the other factors discussed.

❑ The price behavior of fi nancial instruments. One of the key 
assumptions of option pricing models such as Black-Scholes (B-S), which 
is discussed below, is that asset prices follow a lognormal distribution—
that is, the logarithms of the prices show a normal distribution. This char-
acterization is not strictly accurate: prices are not lognormally distributed. 
Asset returns, however, are. Returns are defi ned by formula (8.8). 
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where 
Pt = the asset market price at time t 
Pt+1 = the price one period later

Given this defi nition, and assuming a lognormal distribution, an asset’s 
expected return may be calculated using equation (8.9).
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where 
E [ ] = the expectation operator
r = the annual rate of return 
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❑ Volatility. The higher the volatility of the underlying asset’s price, 
the greater the probability of exercise, so the asset’s volatility when the 
option is initiated will also infl uence the premium. The volatility of an 
asset is the annualized standard deviation of its price returns—that is, of 
the returns that generate the asset’s prices, not the prices themselves. (Us-
ing prices would give inconsistent results, because the standard deviation 
would change as prices increased.) This is expressed formally in (8.10).
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where 
Xi = the ith price relative
µ = the arithmetic mean of the observed prices 
R =  the total number of observations 
σ = volatility of the price returns 

The volatility value derived by (8.10) may be converted to an annualized 
fi gure by multiplying it by the square root of the number of days in a year, 
usually taken to be 250 working days. Using this formula based on market 
observations, it is possible to calculate the historical volatility of an asset. 

In pricing an option that expires in the future, however, the relevant 
factor is not historical but future volatility, which, by defi nition, cannot 
be measured directly. Market makers get around this problem by reversing 
the process that derives option prices from volatility and other parameters. 
Given an option price, they calculate the implied volatility. The implied 
volatilities of options that are either deeply in or deeply out of the money 
tend to be high.

The Black-Scholes Option Model
Most option pricing models use one of two methodologies, both of which 
are based on essentially identical assumptions. The fi rst method, used in 
the Black-Scholes model, resolves the asset-price model’s partial differential 
equation corresponding to the expected payoff of the option. The second is 
the martingale method, fi rst introduced in Harrison and Kreps (1979) and 
Harrison and Pliska (1981). This derives the price of an asset at time 0 
from its discounted expected future payoffs assuming risk-neutral prob-
ability. A third methodology assumes lognormal distribution of asset re-
turns but follows the two-step binomial process described in chapter 11. 

Employing pricing models requires the assumption of a complete 
market. First proposed in Arrow and Debreu (1953, 1954), this is a 
viable fi nancial market where no-arbitrage pricing holds—that is, risk-free 
profi ts cannot be generated because of anomalies such as incorrect forward 
interest rates. This means that a zero-cost investment strategy that is initi-
ated at time t will have a zero value at maturity. The martingale method 
assumes that an accurate estimate of the future price of an asset may be 
obtained from current price information. This property of future prices is 
also incorporated in the semistrong and strong market effi ciency scenarios 
described in Fama (1965). 
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Assumptions
The Black-Scholes model is neat and intuitive. It describes a process for 
calculating the fair value of a European call option, but one of its many 
attractions is that it can easily be modifi ed to handle other types, such as 
foreign-exchange or interest rate options.  

Incorporated in the model are certain assumptions. For instance, apart 
from the price of the underlying asset, S, and the time, t, all the variables 
in the model are assumed to be constant, including, most crucially, the 
volatility variable. In addition, the following assumptions are made:

❑ There are no transaction costs, and the market allows short selling
❑ Trading is continuous
❑ The asset is a non-dividend-paying security
❑  The interest rate during the life of the option is known and 

constant
❑ The option can only be exercised on expiry

The behavior of underlying asset prices follows a geometric Brownian 
motion, or Weiner process, with a variance rate proportional to the square 
root of the price. This is stated formally in (8.11). 

 d
d d

S
S

a t b W= +  (8.11)

where 
S = the underlying asset price
a = the expected return on the underlying asset
b = the standard deviation of the asset’s price returns
t = time
W = the Weiner process 

The following section presents an intuitive explanation of the B-S 
model, in terms of the normal distribution of asset price returns.

Pricing Derivative Instruments Using the Black-Scholes Model 
To price an option, its fair value at contract initiation must be calculated. 
This value is a function of the option’s expected terminal payoff, dis-
counted to the day the contract was struck. Expression (8.12) describes 
the expected value of a call option at maturity T.

 E C E S XT T( ) = −( )⎡⎣ ⎤⎦max ,0  (8.12)
where

CT = the price of the call option at maturity T
E = is the expectations operator 
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ST = the price of the underlying asset at maturity T
X = the strike price of the option

According to (8.12), only two outcomes are possible at maturity: either 
the option is in the money and the holder earns ST – X, or it is out of the 
money and expires worthless. Modifying (8.12) to incorporate probability 
gives equation (8.13).

 E C p E S S X XT T T( ) = × >[ ] −( )|  (8.13)

where
p = the probability that on expiry ST > X
E [ST | ST > X  ] = the expected value of ST such that ST > X 

Equation (8.13) derives the expected value of a call option on maturity. 
Equation (8.14) derives the fair price of the option at contract initiation 
by discounting the value given by (8.13) back to this date. 

 C p e E S S X Xrt
T T= × × >[ ] −( )− |  (8.14)

where 
r = the continuously compounded risk-free rate of interest
t = the period from today until maturity

Pricing an option therefore requires knowing the value of both p, the 
probability that the option will expire in the money, and E[ST | ST > X  ] 
– X, its expected payoff should this happen. In calculating p, the probabil-
ity function is modeled. This requires assuming that asset prices follow a 
stochastic process. 

The B-S model is based on the resolution of partial differential equa-
tion (8.15), given the appropriate parameters. The parameters refer to the 
payoff conditions corresponding to a European call option. 
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The derivation of and solution to equation (8.15) are too complex to 
discuss in this book. The interested reader is directed to the works listed in 
the References section. What follows is a discussion of how the probability 
and expected-value functions are solved.
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The probability, p, that the underlying asset’s price at maturity will 
exceed X equals the probability that its return over the option’s holding 
period will exceed a certain critical value. Since asset price returns are as-
sumed to be lognormally distributed and are themselves defi ned as the 
logarithm of price relatives, this equivalence can be expressed as (8.16).

 p prob S X prob return X
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where 
S0 = the price of the underlying asset at the time the option is initiated

Generally, the probability that a normally distributed variable x will 
exceed a critical value xc is given by (8.17).

 p x x N xc
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 (8.17)

where 
µ and σ = the mean and standard deviation, respectively, of x 
N( ) = the cumulative normal distribution 

As discussed earlier, an expansion for µ is the natural logarithm of the 
asset price returns, and for the standard deviation of returns is σ t . Equa-
tions (8.16) and (8.17) can therefore be combined as (8.18).

 (8.18)
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The symmetrical shape of a normal distribution means that the prob-
ability can be obtained by setting 1-N(d ) equal to N(-d ). The result is 
(8.19).

 
  
 

p prob S X N

S
X

r t

tT= >[ ] =

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟+ −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜
ln 0

2

2
σ

σ
⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟  (8.19)



148                               Selected Cash and Derivative Instruments

Now a formula is required to calculate the second part of the expres-
sion at (8.14): the expected value of the option at expiration, T. This in-
volves the integration of the normal distribution curve over the range from 
X to infi nity. The derivation is not shown here, but the result is (8.20).
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Plugging the probability and expected value expressions, (8.19) and 
(8.29), into (8.14) results in (8.21). 
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Equation (8.21) can be simplifi ed as (8.22), the well-known Black-
Scholes option pricing model for a European call option. It states that the 
fair value of a call option is the expected present value of the option on its 
expiry date, assuming that prices follow a lognormal distribution. 

 C S N d Xe N drt= ( ) − ( )−
0 1 2  (8.22)

where
C  = the price of a call option 
S0 = the price of the underlying asset at the time the option is struck
X = the strike price
r = the continuously compounded risk-free interest rate
t = the time to option maturity 

N(d1) and N(d2) are the cumulative probabilities from the normal 
distribution of obtaining the values d1 and d2, defi ned above. N(d1) is the 
delta of the option—that is, the change in the option price for a given 
change in the price of the underlying. N(d2) represents the probability that 
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the option will be exercised. The term e–rt is the present value of one unit 
of cash received t periods from the time the option is struck. Assuming 
that N(d1) and N(d2) both equal 1—that is, assuming complete certainty—
(8.22) simplifi es to (8.23), Merton’s lower bound (the lower bound of call 
prices) for continuously compounded interest rates, introduced in intuitive 
fashion previously in this chapter. Assuming complete certainty, therefore, 
the B-S model reduces to Merton’s bound.

 C = S – Xe–rt (8.23)

Put-Call Parity 
The prices of call and put options are related via the put-call parity theo-
rem. This important relationship obviates the need for a separate model 
for put options.

Consider two portfolios, Y and Z. Y consists of a call option with a ma-
turity date T and a zero-coupon bond that pays out X on T; Z consists of 
a put option also maturing on date T and one unit of the underlying asset. 
The values of portfolios Y and Z on the expiry date are given by equations 
(8.24) and (8.25), respectively. 

 MV S X X X SY T T T, max , max ,= −[ ] + = [ ]0  (8.24)

 MV X S S X SZ T T T T, max , max ,= −[ ] + = [ ]0  (8.25)

Both portfolios have the same value at maturity. Since prices are as-
sumed to be arbitrage free, the two sets of holdings must also have the 
same initial value at start time t. The put-call relationship expressed in 
(8.26) must therefore hold. 

 C P S Xet t t
r T t− = − − −( )  (8.26)

From this relationship it is possible to construct equation (8.27) to 
derive the value of a European put option.

 P S T SN d Xe N drT,( ) = − −( ) + −( )−
1 2  (8.27)

Pricing Options on Bonds Using the Black-Scholes Model
The theoretical price of a call option written on a zero-coupon bond is 
calculated using equation (8.28).

 C PN d Xe N drT= ( ) − ( )−
1 2  (8.28)
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EXAMPLES: Options Pricing Using the Black-Scholes Model

1 Calculate the price of a call option written with strike price 21 and a maturity 
of three months written on a non-dividend-paying stock whose current share price 
is 25 and whose implied volatility is 23 percent, given a short-term risk-free inter-
est rate of 5 percent. 

Call price is given by equation C S N d Xe N drt= ( ) − ( )−
0 1 2

a. Assign values to the relevant variables:
S0 = 25
X = 21
r = 5 percent
t = 0.25
σ = 23 percent

b. Calculate the discounted value of the strike price:

 
Xe ert− − ( )= =21 20 739130 05 0 25. . .

c. Calculate the values of d1 and d2: 
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d. Insert these values into the main price equation:

  C S N d Xe N drt= ( ) − ( )−
0 1 2

 
C N e N= ( ) − ( )− ( )25 1 682313 21 1 5673130 05 0 25. .. .

Using the approximation of the cumulative Normal distribution at the points 
1.68 and 1.56, the price of the call option is

 
C = ( ) − ( ) =25 0 9535 20 73913 0 9406 4 3303. . . .

2 Calculate the price of a put option on the same stock, given the same risk-free 
interest rate.

The equation for calculating a put option’s price is  P S T SN d Xe N drT,( ) = − −( ) + −( )−
1 2
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a.  Plugging in the given and derived values, including those for N (d1) and 
N (d2)—0.9535 and 0.9406: 

 P = 20.7391 (1 – 0.9406) – 25 (1 – 0.9535) = 0.06943

3 Use the put-call parity theorem to calculate the price of the put option, plugging 
in the call price derived above: 4.3303. The put-call parity equation is

                                            

e= + − ( )  4.3303 25 21- 0 05 0 25. .

=   0.069434

P C S Xe rt= − + −

Note that this equals the price obtained by applying the put option formula.

4 Calculate the price of a call on the same stock, with the same strike, but with 
only six months to maturity. 

a. All the variable values remain the same except the following: t = 0.5
b. Calculate the discounted value of the strike price:

Xe–rt = 21e–0.05(0.5) = 20.48151 
c. Calculate the values of N (d1) and N (d2): 
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d1 = 1.3071, giving N (d1) = 0.9049
d2 = 1.1445, giving N (d2) = 0.8740

d. Plug these values into the call price equation:

 
C S N d Xe N drt= ( ) − ( )−

0 1 2

 C = 25(0.9049) – 20.48151(0.8740) = 4.7217

This demonstrates the point made earlier that an option’s premium increases 
when the time to expiry, the volatility, or the interest rate (or any combination 
of these) is increased. 
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where 
P = the price of the underlying bond
All other parameters remain the same. 

Note that although a key assumption of the model is that interest rates 
are constant, in the case of bond options, it is applied to an asset price that 
is essentially an interest rate assumed to follow a stochastic process.

For an underlying coupon-paying bond, the equation must be modi-
fi ed by reducing P by the present value of all coupons paid during the life 
of the option. This refl ects the fact that prices of call options on coupon-
paying bonds are often lower than those of similar options on zero-coupon 
bonds because the coupon payments make holding the bonds themselves 
more attractive than holding options on them. 

Interest Rate Options and the Black Model
In 1976 Fisher Black presented a slightly modifi ed version of the B-S 
model, using similar assumptions, for pricing forward contracts and 
interest rate options. Banks today employ this modifi ed version, the 
Black model, to price swaptions and similar instruments in addition to 
bond and interest rate options, such as caps and fl oors. The bond options 
described in this section are options on bond futures contracts, just as the 
interest rate options are options on interest rate futures.

The Black model refers to the underlying asset’s or commodity’s spot 
price, S(t). This is defi ned as the price at time t payable for immediate 
delivery, which, in practice, means delivery up to two days forward. The 
spot price is assumed to follow a geometric Brownian motion. The theo-
retical price, F(t,T ), of a futures contract on the underlying asset is the 
price agreed at time t for delivery of the asset at time T and payable on 
delivery. When t = T, the futures price equals the spot price. As explained 
in chapter 12, futures contracts are cash settled every day through a clear-
ing mechanism, while forward contracts involve neither daily marking to 
market nor daily cash settlement. 

The values of forward, futures, and option contracts are all functions of 
the futures price F(t,T ), as well as of additional variables. So the values at 
time t of a forward, a futures, and an option can be expressed, respectively, 
as f  (F,t), u(F,t), and C(F,t). Since the value of a forward contract is also 
a function of the price of the underlying asset S at time T, it can be rep-
resented by f  (F,t,S,T  ). Note that the value of the forward contract is not 
the same as its price. As explained in chapter 12, a forward’s price, at any 
given time, is the delivery price that would result in the contract having a 
zero present value. When the contract is transacted, the forward value is 
zero. Over time both the price and the value fl uctuate. The futures price 
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EXAMPLE: Bond-Option Pricing

Calculate the price of a European call option with a strike price of 
$100 and a maturity of one year, written on a bond with the following 
characteristics: 

Price $98
Semiannual coupon  8.00 percent 
Time to maturity 5 years
Bond price volatility 6.02 percent
Coupon payments $4 each, one payable in three 
 months and another in nine months 
 from the option start date
Three-month risk-free interest rate  5.60 percent
Nine-month risk-free interest rate 5.75 percent
One-year risk-free interest rate 6.25 percent

a.  Calculate the present value of the coupon payments made during 
the life of the option: 

 4 4 3 9444 3 83117 7 775570 056 0 25 0 0575 0 75e e− × − ×+ = + =. . . . . . .

b.  Subtract the present value of the coupon payments from the bond 
price: P = 98 – 7.78 = $90.22

c. Calculate d1 and d2:
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d. Plug these values into the equation for calculating the bond call 
option price:

 
C PN d Xe N drT= ( ) − ( )−

1 2
 

 
 

C N e N= −( ) − −( )
=

−90 22 0 6413 100 0 7015

1 1514

0 0625. . .

.

.

    

The premium of the call option, $1.15, is composed entirely of 
time value.  
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is the price at which a forward contract has a zero current value. When a 
forward is traded, therefore, its price is equal to the futures price F. This 
equivalence is expressed in equation (8.29), which states that the value of 
the forward contract is zero when the contract is taken out, and the con-
tract price S(T  ) is always equal to the current futures price, F(t,T  ).

 f F t F T, , ,( ) = 0  (8.29)

Because futures contracts are repriced each day at the new forward 
price, their prices imply those of forward contracts. When F rises, so that 
F>S, f is positive; when F falls, f is negative. When the contract expires 
and delivery takes place, the forward contract value equals the spot price 
minus either the contract price or the spot price, futures price equals the 
spot price, and the value of the forward contract equals the spot price 
minus the contract price or the spot price.

 f F T S T F S, , ,( ) = −  (8.30)

The value of a bond or commodity option at maturity is either the 
difference between the spot price of the underlying and the contract price 
or zero, whichever is larger. Since the futures price on the maturity date 
equals the spot price, the equivalence expressed in (8.31) holds.

 
 

C F T
F STF S,( ) =

⎧
⎨
⎪

⎩⎪

≥−
else

if 

0  (8.31)

The Black model assumes that the prices of futures contracts follow 
a lognormal distribution with a constant variance that the capital asset 
pricing model applies in the market, and that no transaction costs or taxes 
apply. Under these assumptions, a risk-free hedged position can be created 
that is composed of a long position in the option and a short position in 
the futures contract. Following the B-S model, the number of options 
put on against one futures contract is given by ∂ ( ) ∂⎡⎣ ⎤⎦C F t F, / , which is the 
derivative of C(F, t) with respect to F. The change in the hedged position 
resulting from a change in the price of the underlying is given by expres-
sion (8.32).

 ∂ ( ) − ∂ ( ) ∂⎡⎣ ⎤⎦ ∂C F t C F t F F, , /  (8.32)

The principle of arbitrage-free pricing requires that the hedged portfo-
lio’s return equal the risk-free interest rate. This equivalence plus an expan-
sion of ∂ ( )C F t,  produces partial differential equation (8.33).
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Solving this equation (not shown here) involves rearranging it as (8.34).
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The solution to the partial differential equation (8.22) is not presented 
here. 

Setting T = T-t and using (8.32) and (8.33), an equation can be created 
for deriving the fair value of a commodity option or option on a forward 
contract, shown as (8.35).

 C F t e FN d S N drT
T,( ) = ( ) − ( )⎡⎣ ⎤⎦

−
1 2  (8.35)
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Comments on the Black-Scholes Model
The introduction of the Black-Scholes model paved the way for the rapid 
development of options as liquid tradable products. B-S is widely used 
today to price options and other derivatives. Nevertheless, academics have 
pointed out several weaknesses related to the main assumptions on which 
it is based. The major criticisms involve the following: 

❑ The assumption of frictionless markets. This is, at best, only for 
large markets and then only approximately. 

❑ The assumption of a constant interest rate. This is possibly the 
model’s most unrealistic assumption. Not only are rates dynamic, but 
those at the short end of the yield curve often move in the opposite direc-
tion from asset prices, particularly the prices of bonds and bond options.

❑ The volatility data. Of all the inputs to the B-S model, the vari-
ability of the underlying asset—its volatility—is the most problematic. 
The distribution of asset prices is assumed to be lognormal, meaning that 
the logarithms of the prices are normally distributed (lognormal rather 
than normal distribution is used because prices cannot have negative val-
ues, which would be allowed in a normal distribution). Though accepted 
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as a reasonable approximation of reality, this assumption is not completely 
accurate and fails to account for the extreme moves and market shocks 
that sometimes occur.

❑ Limitation to European exercise. Although American options 
are rarely exercised early, sometimes the situation requires early exercise, 
and the B-S model does not price these situations.

❑ The assumption, for stock options, of a constant dividend 
yield. 

Stochastic Volatility
The volatility fi gure used in a B-S computation is constant and derived 
mathematically, assuming that asset prices move according to a geometric 
Brownian motion. In reality, however, asset prices that are either very high 
or very low do not move in this way. Rather, as a price rises, its volatility 
increases, and as it falls, its variability decreases. As a result, the B-S model 
tends to undervalue out-of-the-money options and overvalue those that 
are deeply in the money. 

To correct this mispricing, stochastic volatility models, such as the one 
proposed in Hull and White (1987), have been developed.

Implied Volatility
As noted earlier, although many practitioners use a historical volatility 
fi gure in applying the B-S model, the pertinent statistic is really the un-
derlying asset’s price volatility going forward. To estimate this future value, 
banks employ the volatility that is implied by the prices of exchange-traded 
options. It is not possible, however, to rearrange the B-S model to derive 
the volatility measure, σ, as a function of the observed price and the other 
parameters. Generally, therefore, a numerical iteration process, usually the 
Newton-Raphson method, is used to arrive at the value for σ given the 
price of the option.

The market uses implied volatilities to gauge the volatility of indi-
vidual assets relative to the market. The price volatility of an asset is not 
constant. It fl uctuates with the overall volatility of the market, and for 
reasons specifi c to the asset itself. When deriving implied volatility from 
exchange-traded options, market makers compute more than one value, 
because different options on the same asset will imply different volatilities 
depending on how close to at the money the option is. The price of an 
at-the-money option is more sensitive to volatility than that of a deeply 
in- or out-of-the-money one. 
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Other Option Models
Other pricing models have been developed drawing on the pioneering 
work done by Black and Scholes. The B-S model is straightforward and 
easy to apply, and subsequent work has focused on modifying its assump-
tions and restrictions to improve its accuracy—by, for instance, incorpo-
rating nonconstant volatility—and expand its applicability, to American 
options and those on dividend-paying stocks, among other products. A 
number of models have been developed to price specifi c contracts. The 
Garman and Kohlhagen (1983) and Grabbe (1983) models are applied to 
currency options, while the Merton (1973) and the Barone-Adesi Whaley 
(1987), or BAW, model is used for commodity options. Roll (1977), 
Geske (1979), and Whaley (1981) developed still another model to 
value American options on dividend-paying assets. More recently Black, 
Derman, and Toy (1990) introduced a model to price exotic options. 

Some of the newer models refer to parameters that are diffi cult to ob-
serve or measure directly. In practice, this limits their application much as 
B-S is limited. Usually the problem has to do with calibrating the model 
properly, which is crucial to implementing it. Calibration entails inputting 
actual market data to create the parameters for calculating prices. A model 
for calculating the prices of options in the U.S. market, for example, would 
use U.S. dollar money market, futures, and swap rates to build the zero-
coupon yield curve. Multifactor models in the mold of Heath-Jarrow-
Morton employ the correlation coeffi cients between forward rates and the 
term structure to calculate the volatility inputs for their price calculations. 

Incorrect calibration produces errors in option valuation that may be 
discovered only after signifi cant losses have been suffered. If the necessary data 
are not available to calibrate a sophisticated model, a simpler one may need 
to be used. This is not an issue for products priced in major currencies such 
as the dollar, sterling, or euro, but it can be a problem for other currencies. 
That might be why the B-S model is still widely used today, although models 
such as the Black-Derman-Toy and the one proposed in Brace, Gatarek, and 
Musiela (1994) are increasingly employed for more exotic option products. 

Chapter Notes 

1. I’m told this terminology originates in the fact that Bermuda is midway between 
Europe and America. Asian options are defi ned not in terms of when they can be exercised but 
how their settlement values are determined—not by the difference between the strike and the 
current price of the underlying asset but by the difference between the strike and the average 
of the prices recorded by the underlying at a range of specifi ed dates or over a specifi ed period. 
Hence these are also known as average or average rate options. A former colleague informs me 
that they are termed Asian because they originated in Japanese commodity markets. 
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C H A P T E R  9

Measuring Option Risk

T his chapter looks at how options behave in response to changes 
in market conditions and the main issues that a market maker in 
options must consider when writing the contracts. It also reviews 

“the Greeks”—the sensitivity measures applied to option books—and an 
important set of interest rate options: caps and fl oors. 

Option Price Behavior 
As noted in chapter 8, the value of an option is a function of fi ve factors:

❑ The price of the underlying asset
❑ The option’s strike price
❑ The option’s time to expiry
❑ The volatility of the underlying asset’s price returns
❑ The risk-free interest rate applicable to the life of the option

The price of an option is composed of intrinsic value and time value. 
An option’s intrinsic value is clear. Valuation models, therefore, essentially 
price time value. 

Assessing Time Value
At-the-money options have the greatest time value; in-the-money con-
tracts have more time value than out-of-the-money ones. These relation-
ships refl ect the risk the different options pose to the market makers that 
write them. Out-of-the-money call options, for instance, have the lowest 
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probability of being exercised, so market makers may not even hedge 
them. In leaving these positions uncovered, of course, they run the risk 
that the underlying asset’s price will rise suffi ciently to drive the option 
into the money, in which case the writers must purchase the asset in the 
market and suffer a loss. This scenario is least likely for options that are 
deeply out of the money. These contracts thus present market makers with 
the smallest risk, so their time value is lowest.

In-the-money call options are more likely to be exercised. Market 
makers writing these contracts therefore generally hedge their positions. 
They may do so using futures contracts or a risk reversal—a long or short 
position in a call that is reversed to the same as the original position by 
selling or buying the position for forward settlement (and vice versa). 
The in-the-money call writer buys a call with the same expiry as the one 
written but with a slightly higher strike, to cap the possible loss (or a 
lower strike, to hedge it completely), and simultaneously sell a call with 
a longer term to offset the cost. Or they may use the underlying asset. 
Market makers choosing the last alternative run the risk that the asset’s 
price will fall, in which case the option will not be exercised and they 
will be forced to dispose of the asset at a loss. The more deeply in the 
money the option, the lower this risk—and, accordingly, the smaller the 
time value. 

At-the-money options—which constitute the majority of OTC 
contracts—are the riskiest to write. They have 50–50 chances of being 
exercised, so deciding whether or not to hedge them is less straightfor-
ward than with other options. It is this uncertainty about hedging that 
makes them so risky. Accordingly, at-the-money options have the high-
est time values. 

American Options
In theory, American options should have greater value than equivalent 
European ones, because they can be exercised before maturity. In practice, 
however, early exercise rarely happens. This is because option holders real-
ize only their contracts’ intrinsic value when they exercise. By selling their 
contracts in the market, in contrast, holders can realize their full value, 
including time value. 

Since the possibility of early exercise, which represents the chief dif-
ference between American and European options, is rarely actualized, the 
two types of contracts generally have equivalent values. Pricing models, 
however, calculate the probabilities that different options will be exercised. 
For American options, this entails determining what circumstances make 
early exercise more likely and assigning the contracts higher prices in these 
situations.
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One situation conducive to early exercise is when an option has nega-
tive time value. This can happen when it is deeply in the money and very 
near maturity. Although, technically, an option in this situation still has a 
small positive time value, this value is outweighed by the opportunity cost 
of deferring the cash fl ows from the underlying asset that the holder would 
gain by exercising. Consider a deeply in-the-money option on a futures 
contract. By deferring exercise, holders lose the opportunity to invest the 
profi ts they would realize on the futures contract and forgo potential inter-
est income from the contract’s daily cash settlements. 

The Greeks
Options’ price sensitivity is different from that of other fi nancial market 
instruments. An option contract’s value can be affected by changes in any 
one or any combination of the fi ve factors considered in option pricing 
models (of course, strike prices are constant in plain vanilla contracts). 
In contrast, swaps’ values are sensitive to one variable only—the swap 
rate—and bond futures prices are functions of just the current spot price 
of the cheapest-to-deliver bond and the current money market repo rate. 
Even more important, unlike for the other instruments, the relationship 
between an option’s value and a change in a key variable is not linear. 

All this makes risk management more complex for option books than 
for portfolios of other instruments. Each variable must be considered and, 
in some cases, derivatives of these variables. The latter are often referred to 
as the “Greeks,” because Greek letters are used to denote them all, except 
volatility sensitivity. This is most commonly represented by vega, although 
the Greek kappa is also sometimes used.

Delta
The N(d1) term in the Black-Scholes equation represents an option’s delta. 
Delta indicates how much the contract’s value, or premium, changes as the 
underlying asset’s price changes. An option with a delta of zero does not 
move at all as the price of the underlying changes; one with a delta of 1 
behaves the same as the underlying. The value of an option with a delta of 
0.6, or 60 percent, increases $60 for each $100 increase in the value of the 
underlying. The relationship is expressed formally in (9.1).

 δ =
∆
∆
C
S

 (9.1)

where
C = call option price 
S = the price of the underlying asset
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Mathematically, an option’s delta is the partial derivative of its pre-
mium with respect to the price of the underlying. This is expressed in 
equation (9.2).

or
 

δ

δ

=
∂
∂

=
∂
∂

C
S

P
S

or

 (9.2)

where 
P = the put price 

Delta is closely related, but not equal, to the probability that an option 
will be exercised. It is very important for option market makers and is also 
the main hedge measure. 

To hedge the options they write, market makers can buy matching op-
tions, buy or sell other instruments with the same but opposite values, or 
buy or sell the underlying assets. The amount of the hedging instrument 
used is governed by the options’ delta. Say a trader writes ten call options, 
each representing one hundred shares of common stock, with a delta of 
0.6. A hedge for this position might consist of six hundred shares of the 
underlying stock. If the share price rises by $1, the $600 rise in the value 
of the equity position will offset the trader’s $600 loss in the option posi-
tion. The combined positions are delta neutral. This process is known as 
delta hedging. As will be discussed later, such hedges are only approximate. 
Moreover, an option’s delta changes during its term, so delta hedges must 
be monitored and adjusted, a process known as dynamic hedging.

A combined option-underlying position with a positive delta is equiva-

FIGURE 9.1  Adjustments to Delta-Neutral Hedge in Response 
to Changes in the Underlying Asset’s Price

  OPTION RISE IN UNDERLYING ASSET PRICE FALL IN UNDERLYING ASSET PRICE

Long call Rise in delta: sell underlying Fall in delta: buy underlying

Long put Fall in delta: sell underlying Rise in delta: buy underlying

Short call Rise in delta: buy underlying Fall in delta: sell underlying

Short put Fall in delta: buy underlying Rise in delta: sell underlying
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lent to a long position in the underlying asset alone. A rise in the asset 
price results in a profi t, since the market maker could theoretically sell 
either the underlying or the call option at a higher price. The opposite is 
true if the price of the underlying falls. A positive delta means that a mar-
ket maker trying to maintain a delta-neutral position is edged and must 
buy or sell delta units of the underlying asset, although in practice futures 
contracts may be used. FIGURE 9.1 shows the effect of changes in the un-
derlying price on an option book’s delta and the transactions necessary to 
restore neutrality. 

Gamma
Just as modifi ed duration becomes inaccurate as the magnitude of the 
yield change increases, so do inaccuracies occur in the use of delta to deter-
mine option-book hedges. This is because delta itself changes as the price 
of the underlying changes. Accordingly, a book that is delta-neutral at one 
asset price may not be when the price rises or falls. To help them guard 
against this, market makers employ gamma, which indicates how much an 
option’s delta changes with movements in the underlying price. Gamma is 
expressed formally as (9.3).

 Γ
∆
∆

=
δ
S

 (9.3)

Mathematically, gamma is the second partial derivative of the option 
price with respect to the underlying asset’s price. This is expressed in (9.4).

or
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The equation for gamma is (9.5).

 Γ =
( )N d

S T
1

σ
 (9.5)

Gamma is the only major Greek that does not measure the sensitivity 
of the option premium; instead, it measures the delta sensitivity. Since 
delta determines an option’s hedge ratio, gamma indicates how much this 
ratio must change for changes in the underlying’s price. A nonzero gamma 
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is thus problematic, since it entails continually changing the hedge ratio. 
This relates to the fact that at-the-money options have the highest value 
because they present the greatest uncertainty and hence the highest risk. 

When an option is deeply in or out of the money, its delta does not 
change rapidly, so its gamma is insignifi cant. When it is close to or at the 
money, however, its delta can change very suddenly, and its gamma is ac-
cordingly very large. Long option positions have positive gammas; short 
ones have negative gammas. Options with large gammas, whether positive 
or negative, are problematic for market makers, since their hedges must 
be adjusted constantly to maintain delta neutrality, and that entails high 
transaction costs. The larger the gamma, the greater the risk that the op-
tion book will be affected by sudden moves in the market. A position with 
a negative gamma is the riskiest and can be hedged only through long 
positions in other options. 

A perfectly hedged book is gamma-neutral, meaning that its delta 
does not change. When gamma is positive, a rise in the price of the 
underlying asset increases the delta, necessitating a sale in the underly-
ing asset or in the relevant futures contracts to maintain neutrality. The 
reverse applies if the underlying falls in price. Note that in this situation, 
the market maker is selling into a rising market, thus generating a profi t, 
and buying in a falling one. 

With a negative gamma, an increase in the price of the underlying 
depresses the delta and a decrease raises it. To adjust the hedge in the 
fi rst situation, market makers must buy more of the underlying asset or 
futures equivalents; in the second situation, they must sell the asset or 
the futures. In this case, the market makers are either selling into a falling 
market, and generating losses even as the hedge is being put on, or buy-
ing assets in a rising market. Negative gamma, therefore, represents a high 
risk in a rising market. 

When the price volatility of the underlying asset is high, a desk pursu-
ing a delta-neutral strategy with a position having a positive gamma should 
be able to generate profi ts. Under the same conditions, a position with 
negative gamma could sustain losses and be excessively costly to hedge.

To adjust an option book so that it is gamma-neutral, a market maker 
must buy or sell options on the underlying asset or on the corresponding 
future, rather than trade either of these instruments themselves, since their 
gammas are zero. Adding to the book’s option position, however, changes 
its delta. To maintain delta-neutrality, therefore, the market maker has to 
rebalance the book, using the underlying asset or futures contracts. Since 
gamma, like delta, changes with the market, the gamma hedge must also 
be continually rebalanced.
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Theta
An option’s theta indicates how its value changes with its time to maturity. 
This is expressed formally in (9.6).
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 or
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where
T = time to maturity 

Using the relationships embodied in the B-S model, the theta of a call 
option can be expressed mathematically as (9.7).
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2
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where
π = a constant
X = the strike price 
N(d2) = the probability that the option will be exercised
σ = the volatility of the underlying asset’s price 

Theta measures an option’s time decay. Time decay hurts the holder 
of a long option position, because as expiry nears, the contract’s value 
consists increasingly of intrinsic value alone, which may be zero. Option 
writers, in contrast, benefi t from time decay, which reduces their risk. So a 
high theta should be advantageous for contract writers. High theta, how-
ever, entails high gamma, so, in practice, writers do not gain. 

Some option strategies exploit theta. Writing a short-term option and 
simultaneously purchasing a longer-term one with the same strike price, 
for instance, represents a play on the options’ theta: if the time value of the 
longer option decays at a slower rate than that of the short-dated option, 
the trade will be profi table. 

Vega
An option’s vega—also known as its epsilon (ε), eta (η), or kappa (κ)—
indicates how much its value changes with changes in the price volatility 
of the underlying asset. For instance, an option with a vega of 12.75 will 
increase in price by 0.1275 for a 1 percent increase in volatility. Vega is 
expressed formally as (9.8).

 
v C
=
∆
∆σ  (9.8)



166                               Selected Cash and Derivative Instruments

or

 v C P
=
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 or 

Using the relationships embodied in the B-S formula, vega is defi ned 
as (9.9) for a call or put.
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 v S TN d= ( )∆ 1

Vegas are highest for at-the-money options, decreasing as the 
underlying’s price and the strike prices diverge. Options with short 
terms to expiry have lower vegas than longer-dated ones. Positive vegas 
generally imply positive gammas. Long call and put positions usually 
have positive vegas, meaning that an increase in volatility increases 
their value. 

Buying options is equivalent to buying volatility, while selling options 
is equivalent to selling volatility. Market makers generally like volatility 
and set up their books so that they have positive vega. In making trades, 
they calculate the volatilities implied by the option prices, then compare 
these values with their own estimates. If the implied volatilities appear too 
high, they short calls and puts, reversing their positions when the implied 
volatilities decline.

FIGURE 9.2 shows the modifi cations to a delta hedge in response to 
changes in volatility.

Managing an option book involves trade-offs between gamma and 
vega much like those between gamma and theta. A long options position 
is long vega and long gamma. This is not diffi cult to manage. If volatility 
falls, the market makers may choose to maintain positive gamma if they 
believe that the decrease in volatility can be offset by adjusting gamma in 
the direction of the market. On the other hand, they may prefer to set up 
a position with negative gamma by writing options, thus selling volatility. 
In either case, the costs associated with rebalancing the delta must com-
pensate for the reduction in volatility.

Rho
An option’s rho indicates how much its value changes with changes in in-
terest rates. It is the least used of the sensitivity measures, because market 
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interest rates are probably the least variable of all the parameters used in 
option pricing. Longer-dated options tend to have higher rhos. The mea-
sure is defi ned formally as (9.10).
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Using the relationships expressed in the B-S model formula, the rho of 
a call option is expressed as (9.11).

FIGURE 9.2  Dynamic Hedging Responding to Changes 
in Volatility

  OPTION POSITION RISE IN VOLATILITY FALL IN VOLATILITY

LONG CALL

  ATM No adjustment to delta No adjustment to delta

  ITM Rise in delta, buy underlying Rise in delta, sell underlying

  OTM Fall in delta, sell underlying Fall in delta, buy underlying

LONG PUT

  ATM No adjustment to delta No adjustment to delta

  ITM Fall in delta, sell underlying Rise in delta, buy underlying

  OTM Rise in delta, buy underlying Fall in delta, sell underlying

SHORT CALL

  ATM No adjustment to delta No adjustment to delta

  ITM Fall in delta, sell underlying Rise in delta, buy underlying

  OTM Rise in delta, buy underlying Fall in delta, sell underlying

SHORT PUT

  ATM No adjustment to delta No adjustment to delta

  ITM Rise in delta, buy underlying Rise in delta, sell underlying

  OTM Fall in delta, sell underlying Fall in delta, buy underlying
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 ρ = ( )−Xte N drT
2  (9.11)

where
t = time to expiry 

Lambda
An option’s lambda is similar to its delta in that it indicates the change 
in option premium for a change in the underlying asset’s price. Lambda, 
however, measures this sensitivity against the percentage change in the un-
derlying’s price. It thus indicates the option’s gearing, or leverage, which, 
in turn, indicates the expected profi t or loss for changes in the price of the 
underlying. FIGURE 9.3 shows that in-the-money options have a gearing 
of at least fi ve and sometimes considerably higher. This means that if the 
underlying asset rises in price, holders of a long in-the-money call could 
realize at least fi ve times as great a profi t as if they had invested the same 
cash amount in the asset.   

The sensitivity measures enable market makers and portfolio managers 
to determine the effect of changes in prices and volatility levels on their 
entire books, without having to reprice all the options in them. All they 
need to do is compute the weighted sum of the options’ deltas, gammas, 
vegas, and thetas. The Greeks are also important for risk managers and 
those implementing value-at-risk systems.

FIGURE 9.3  Option Lambda, Nine-Month Bond Option
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The Option Smile
According to the B-S model, the implied volatility of all options with 
the same underlying asset and expiry date should be the same, regardless 
of strike price. In reality, this is not true. The implied volatility observed 
in the market is a convex function of exercise price. When graphed, this 
function forms the volatility, or options, smile shown in generalized form 
as FIGURE 9.4. (Curves graphing actual implied volatilities against strike 
price are not smooth and often not even true smiles.)    

FIGURE 9.4  The Volatility Smile Curves for Bond and 
Equity Options
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The existence of the smile indicates that market makers price in-the-
money options (calls having strikes below the forward price of the under-
lying asset, S, and puts whose strikes are above it) and out-of-the-money 
ones (calls having strikes higher than S and puts having strikes below it) 
with higher volatilities than they do at-the-money options (those whose 
strikes equal S ). This, in turn, suggests that market makers make more 
complex assumptions about the behavior of asset prices than can be fully 
explained by the geometric Brownian motion model. Specifi cally, they 
attach probabilities to terminal values of the underlying asset price that are 
inconsistent with a lognormal distribution.

The degree of a smile’s convexity indicates how far the market price 
process differs from the lognormal function contained in the B-S model. 
The more convex the smile curve, the greater the probability the market 
attaches to extreme outcomes for the price of the asset on expiry, ST . In 
fact, observed asset price returns do follow a distribution with “fatter tails,” 
i.e., with more occurrences at the extremes, than are found in a lognormal 
distribution. In addition, the direction in which the smile curve slopes 
refl ects the skew of the price-returns function, and a curve with a positive 
slope indicates a function that is more positively skewed than the lognor-
mal distribution; the opposite is true for a curve with a negative slope. 

All this suggests that asset-price behavior is more accurately described 
by nonstandard price processes, such as the jump diffusion model or a 
stochastic volatility, than by a model assuming constant volatility. For 
more-detailed discussion of the volatility smile and its implications, inter-
ested readers may consult the works listed in the References section. 

Caps and Floors
Caps and fl oors are options on interest rates such as LIBOR, euribor, U.S. 
prime, and the commercial paper rate. A cap is a call option on interest 
rates, written by a market-making bank and sold to the borrower of a cash 
loan. In return for the premium, the bank agrees that if the reference rate 
rises above the cap level, it will pay the buyer the difference between the 
two. The cap thus places an upper limit on the rate the borrower must 
pay. The loan may precede the cap transaction and be with a third party. 
Alternatively, the cap may be transacted alongside the loan, or as part of it, 
as a form of interest rate risk management. In that case, the cap’s notional 
amount will equal the loan amount. The cap term can be fairly long to 
match the loan term—commonly as much as ten years. 

Typically, the cap rate is compared with the indexed interest rate on 
the rate-reset dates—semiannually, for instance, if the reference rate is six-
month LIBOR. The cap actually consists of a strip of individual contracts, 
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called caplets, corresponding to each of the reset periods. When the index 
interest rate is below the cap level, no payment changes hands, except for 
the interest payment the borrower owes on the loan, computed at the 
market rate. When the index rate is fi xed above the cap level, the cap seller 
will make a payment computed by applying the difference between the 
two rates, prorated for the reset period—quarterly, semiannual, and so 
forth—to the notional amount. Since the payments, like those of FRAs, 
are made at the beginning of the period covered, they are discounted at the 
index rate. Equation (9.12) is the payment calculation.
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where
r = the index interest rate on the reset date 
rX = the cap level 
M = the notional amount of the cap
B = the day base (360 or 365)
N = the number of days in the interest period—that is, the days to the 

next rate fi x

The cap’s premium is a function of the probability that it will be 
exercised, based on the volatility of the forward interest rate. Caps are 
frequently priced using the Black (1976) model, taking the cap level as the 
strike and the forward rate as the underlying asset’s “price.” The resulting 
equation for computing the premium is (9.13). 
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rf is the forward rate for the relevant term 
φ is the number of times a year the rate is fi xed—semiannual or 

quarterly, for instance 
σf  is the forward-rate volatility
T is the period from the start of the cap to the next caplet payment 

date
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Each caplet can be priced individually and the results summed to give 
the total cap premium. The Black model assumes constant volatility, so 
banks use later models to price products for which this assumption is con-
sidered materially unrealistic.

Like caps, fl oors are series of individual contracts. These are called 
fl oorlets, and they function essentially as put options on interest rates. 
Lenders may buy fl oors to limit their income losses should interest rates 
fall. A long call cap position combined with a short fl oor position is a 
collar, so called because it bounds the interest rate payable on the upside 
at the cap level and on the downside at the fl oor level. Zero-cost collars, 
in which the cap and fl oor premiums are identical, are very popular with 
corporations seeking to manage their interest rate risk. 
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Credit Derivatives

Unless purchasing what are considered default-free instruments, 
such as U.S. Treasuries, German bunds, or U.K. gilts, bond inves-
tors are exposed to credit risk. This is the risk that the debt issuer 

will default either on servicing the loan—delaying or failing to make the 
coupon payments, known as a technical default—or on paying back the 
principal, an actual default. To hedge this risk, investors may use credit 
derivatives. These instruments, which were introduced in signifi cant vol-
ume only in the mid-1990s, were originally designed to protect banks and 
other institutions against losses arising from credit events. Today they are 
used to trade credit and to speculate, as well as for hedging.

Gup and Brooks (1993) noted that swaps’ credit risk, unlike their 
interest rate risk, could not be hedged. That was true in 1993. The situ-
ation changed quickly, however, in years following. By 1996 a liquid 
market existed in instruments designed for just such hedging. Credit 
derivatives are, in essence, insurance policies against a deterioration in 
the credit quality of borrowers. The simplest ones even require regular 
premiums, paid by the protection buyer to the protection seller, and 
make payouts should a specifi ed credit event occur. 

As noted, credit derivatives may be used by investors to manage the 
extra risk they take on by opting for the higher returns of non–default-free 
debt. The instruments can also be used, however, to synthesize the expo-
sure itself, if, for instance, compelling reasons exist for not putting on the 
cash-market position. Since credit derivatives are OTC products, they can 
be tailored to meet specifi c requirements. 
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FIGURE 10.1  Corporate Bond Credit Ratings

  FITCH MOODY’S S&P SUMMARY DESCRIPTION

Investment Grade

AAA Aaa AAA Gilt edged, prime, maximum safety,
   lowest risk, and when sovereign 
   borrower considered “default-free”

AA+ Aa1 AA+

AA Aa2 AA High-grade, high credit quality

AA– Aa3 AA–

A+ A1 A+

A A2 A Upper-medium grade

A– A3 A–

BBB+ Baa1 BBB+

BBB Baa2 BBB Lower-medium grade

BBB– Baa3 BBB–

Speculative Grade

BB+ Ba1 BB+

BB Ba2 BB Low grade, speculative

BB– Ba3 BB–

B+ B1

B B B Highly speculative

B– B3

Predominantly Speculative, Substantial Risk, or in Default

CCC+  CCC+

CCC Caa CCC Substantial risk, in poor standing

CC Ca CC May be in default, very speculative

C C C Extremely speculative

  CI Income bonds—no interest being paid

DDD

DD   Default

D  D
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Credit Risk
When a technical or actual default occurs, bondholders suffer losses as the 
value of their assets declines or, in the worst case, disappears entirely. The 
extent of credit risk varies with the fi scal condition of the borrowers and 
the health of the greater economy. The magnitude of the risk is usually en-
capsulated in a formal credit rating, assigned by agencies such as Standard 
& Poor’s, Moody’s, and Fitch. The agencies arrive at these ratings, shown 
in FIGURE 10.1, after analyzing a company’s business and circumstances. 
Among the issues they consider are the following: 

1   The fi nancial position of the company, as determined by its balance 
sheet and anticipated cash fl ows and revenues 

 — Other issues, such as the quality of the management and succes-
sion planning 

 — The company’s ability to meet scheduled interest and principal 
payments both in its domestic and in foreign currencies 

2   The outlook for the company’s industry as whole and the competi-
tion within it

3   The health of the domestic economy

Another indicator of credit risk is the credit risk premium: the spread 
between the yields on corporate bonds and those of government bonds in 
the same currency. This spread is the compensation required by investors 
for holding bonds that are not default-free. The size of the credit premium 
changes with the market’s perception of the fi nancial health of individual 
companies and sectors and of the economy in general. The variability of 
the premium is illustrated in FIGURES 10.2 and 10.3 on the following 
page, which show the spreads between the U.S.-dollar-swap and Treasury 
yield curves in, respectively, February 2001 and February 2004. 

The credit spread refl ects a number of macroeconomic and micro-
economic factors, and at any one time is a good snapshot indicator of the 
perceived health and future prospect of the economy. For example, the 
reduction in spread from 2001 to 2004 refl ects a general increase in favor-
able perception on the health of the U.S. economy, following the technol-
ogy and dot-com boom and bust of the previous years and the market 
disruption following September 11, 2001. 

Credit Risk and Credit Derivatives
Credit derivatives are fi nancial contracts designed to reduce or eliminate 
credit risk exposure by providing insurance against losses suffered because of 
credit events. The loan or bond carrying the credit risk in question is the ref-
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erent, or underlying, asset. The referent asset issuer or borrower is the obli-
gor. The terms of a credit derivative usually include specifi cations of the type 
of events that will trigger payouts. These typically include the following:

FIGURE 10.3  Yield Curves for Active U.S. Treasury Securities 
and U.S. Dollar Swaps on February 3, 2004
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FIGURE 10.2  Yield Curves for Active U.S. Treasury Securities 
and U.S. Dollar Swaps on February 2, 2001
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❑ Bankruptcy or insolvency of the reference asset obligor 
❑ Financial restructuring required under bankruptcy protection 
❑ Technical default
❑  The bond’s credit spread over Treasuries widens beyond a specifi ed 

level 
❑ A downgrade in credit rating below a specifi ed level

Applications of Credit Derivatives 
Any institution—including investment and commercial banks, insurance 
companies, corporations, fund managers, and hedge funds—that is or 
desires to be exposed to credit risk may use credit derivatives to manage 
or create it. The credit risk managed may be the one inherent in corpo-
rate- or non–AAA-sovereign-bond portfolios or the risk associated with 
commercial loan books. Indeed, commercial loans were credit derivatives’ 
fi rst area of application. Intense competition to make loans, combined 
with rapid disintermediation—the lessening of the role of banks as 
intermediaries—forced commercial banks to reevaluate their lending poli-
cies with a view to improving profi tability and return on capital. Credit 
derivatives helped them restructure their businesses by enabling them to 
repackage and parcel out credit risk while retaining assets on their balance 
sheets (when required) and thus maintaining client relationships. Credit 
derivatives are particularly well suited for these and similar purposes for 
the following reasons:

❑ The issuer of the original debt or borrower of the original loan, 
known as the reference entity, need not be a party to the credit risk transfer 
and in fact is usually not even aware of the transaction, thus allowing the 
client relationship between the lending bank and the borrower to be main-
tained. 

❑ The credit derivative can be tailored to the requirements of the pro-
tection buyer, as opposed to the liquidity or term of the underlying loan. 

❑ Credit derivatives can be used to synthesize the economic effect of 
selling a bank loan short—a transaction not possible in the cash market—
and do so theoretically without the risk of a liquidity or delivery squeeze, 
since a specifi c credit risk is being traded. 

❑ Because the derivatives isolate credit risk from other factors, such 
as client relationships and interest rate risk, they offer a formal mechanism 
for pricing credit issues only. A market in credit alone can thus evolve, al-
lowing still more effi cient pricing and the modeling of a term structure of 
credit rates.

❑ Unless embedded in fi xed-income products, such as structured or 
credit-linked notes, the derivatives are off the balance sheet. This status 
endows them with tremendous fl exibility and leverage, characteristics they 
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share with other fi nancial derivatives. For instance, bank loans are often 
deemed unattractive as investments because of the administration that 
managing and servicing a loan portfolio requires. Investors can acquire 
exposure to bank loans’ returns while avoiding the administrative costs 
through, say, a total return swap. The same transaction allows banks to 
distribute their loan credit risk.

Credit derivatives are important tools not only for commercial banks 
but also for bond portfolio managers, who can use them to increase the 
liquidity of their portfolios, profi t from credit-pricing anomalies, and en-
hance returns. Credit derivatives separate the ownership and management 
of the credit risk associated with the assets in question from ownership 
of their other features. This means that banks can transfer the credit risk 
exposures of illiquid assets, such as bank loans and illiquid bonds, thus 
protecting themselves against credit loss, even if they cannot transfer the 
assets themselves. Among the reasons banks use credit derivatives are the 
following:

To diversify their credit portfolios. Banks may wish to take on 
additional credit exposure by selling credit protection on assets they own 
to other banks or investors, thus enhancing their portfolio returns. They 
may sell derivatives to non-bank clients who don’t want to buy the associ-
ated assets directly but do want exposure to the credit risk of the assets. In 
such a transaction, the bank acts as a credit intermediary.

To reduce their credit exposure. By buying credit default swaps, 
banks can reduce their credit exposure on individual assets or sector con-
centrations. This tactic is especially useful when the positions in question 
cannot be sold because of relationship or tax issues.

To act as market makers or traders in credit derivatives. Credit 
derivative traders may or may not hold the reference assets directly, 
depending on their appetite for risk and the liquidity of the market they 
would need to use to hedge their derivative contracts.

Credit Derivative Instruments
Credit Default Swap
The most common credit derivative, and possibly the simplest, is the credit 
default swap—also known as the credit or default swap. As diagrammed in 
FIGURE 10.4, it is a bilateral contract in which a protection seller, or guaran-
tor, in return for a periodic fi xed fee or a onetime premium agrees to pay 
the benefi ciary counterparty in case any of a list of specifi ed credit events 
occurs. The fee is usually quoted as a percentage of the nominal value of 
the reference asset or basket of assets. The swap term does not have to 



                                         Credit Derivatives 179

match the maturity of the reference asset and in most cases does not. 
In a default, the swap is terminated, and the default payment is calcu-

lated and handed over. The amount of this payment may be linked to the 
change in price of the reference asset or another specifi ed asset or fi xed at 
a predetermined recovery rate. Alternatively, it may involve actual delivery 
of the reference asset at a specifi ed price.  

Banks may use default swaps to trade sovereign and corporate credit 
spreads without trading the actual assets. The party long the swap—the 
protection buyer—need not own or ever have owned the reference asset. 
Nevertheless, he or she profi ts should the obligor suffer a rating down-
grade or perceived reduction in credit quality. This is because such an 
event increases the cost of protecting the asset, so the swap buyer can sell 
the position at a profi t, assuming a purchaser can be found. 

Credit Options
Credit options are also bilateral OTC fi nancial contracts. Like other op-
tions, they may be designed to meet specifi c hedging or speculative re-
quirements. Also like other options, they may be plain vanilla or exotic. 
The buyer of a vanilla, or standard, credit call option has the right, but 
no obligation, to purchase the underlying credit-sensitive asset or credit 
spread at a specifi ed price and at a specifi ed time or during a specifi ed 
period. The buyer of a vanilla credit put option has the right, but no 
obligation, to sell the underlying credit-sensitive asset or credit spread. 

In exotic credit options, one or more parameters differ from the va-
nilla norm. A barrier credit option, for example, specifi es a credit event 

FIGURE 10.4  Credit Default Swap

Default payment on triggering event

Fee or premium

Bank A
“Beneficiary”

Reference asset

Bank B
“Guarantor”
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that would trigger the option or inactivate it. A digital credit option has 
a binary payout: if it is at or out of the money at expiration, it pays zero; 
otherwise, it pays a fi xed amount, no matter how far in the money it is. 

Bond investors can use credit options to hedge against rating down-
grades and similar events that would depress the value of their holdings. 
To ensure that any loss resulting from such events will be offset by a profi t 
on their options, they purchase contracts whose payoff profi les refl ect their 
bonds’ credit quality. The options also enable banks and other institutions 
to take positions on credit spread movements without taking ownership of 
the related loans or bonds. The writer of credit options earns fee income.

Credit options allow market participants to express their views on 
credit alone, without reference to other factors, such as interest rates, with 
no cost beyond the premium. For example, investors who believe that 
the credit spread associated with an individual entity or a sector (such as 
all AA-rated sterling corporates) will widen over the next six months can 
buy six-month call options on the relevant spread. If the spread widens 
beyond the strike during the six months, the options will be in the money, 
and the investors will gain. If not, the investors’ loss will be limited to the 
premium paid.

Credit-Linked Notes
Credit-linked notes, or CLNs, are known as funded credit derivatives, because 
the protection seller pays the entire notional value of the contract up front. 
In contrast, credit default swaps pay only in case of default and are therefore 
referred to as unfunded. CLNs are often used by borrowers to hedge against 
credit risk and by investors to enhance their holdings’ yields.

Credit-linked notes are hybrid securities, generally issued by an invest-
ment-grade entity, that combine a credit derivative with a vanilla bond. 
Like a vanilla bond, a standard CLN has a fi xed maturity structure and 
pays regular coupons. Unlike bonds, all CLNs, standard or not, link their 
returns to an underlying asset’s credit-related performance, as well as to 
the performance of the issuing entity. The issuer, for instance, is usually 
permitted to decrease the principal amount if a credit event occurs. Say 
a credit card issuer wants to fund its credit card loan portfolio by issuing 
debt. To reduce its credit risk, it fl oats a 2-year credit-linked note. The 
note has a face value of 100 and pays a coupon of 7.50 percent, which is 
200 basis points above the 2-year benchmark. If more than 10 percent of 
its cardholders are delinquent in making payments, however, the note’s 
redemption payment will be reduced to $85 for every $100 of face value. 
The credit card issuer has in effect purchased a credit option that lowers 
its liability should it suffer a specifi ed credit event—in this case, an above-
expected incidence of bad debts. 
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Why would investors purchase such a note? Because its coupon is 
higher than the one the credit card bank would pay on a vanilla bond 
and, presumably, higher than the rates for many other investments in the 
market. In addition, such notes are usually issued below par, so if they are 
redeemed at par, investors realize a substantial capital gain.

Total Return Swaps
A total return swap, or TRS—also known as a total rate of return swap—
is one of the principal instruments used by banks and other fi nancial 
instruments to manage their credit risk exposure. As defi ned in Francis 
et al (1999), page 29, it is an agreement between two parties to exchange 
the total return from the reference asset or basket of assets—bank loans or 
credit-sensitive securities such as corporate loans or sovereign or corporate 
bonds—for some other fi xed or fl oating cash fl ow, usually tied to LIBOR 
or other loans or credit-sensitive securities, in the process transferring the 
credit risk from one party to the other. The TRS differs from other credit 
derivatives in that the payments between its counterparties are connected 
to changes in the market value of the underlying asset as well as to changes 
resulting from a credit event.

In some versions of a TRS, the underlying asset is sold to the counter-
party, with a corresponding swap transacted on the side; in other versions 
the underlying asset remains unsold. The term of the TRS need not match 
the maturity of the underlying security and, in fact, rarely does. 

FIGURE 10.5 diagrams a generic TRS. The two counterparties are la-

FIGURE 10.5  Total Return Swap
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beled as banks, but the total return payer, or benefi ciary, may be any fi nan-
cial institution, including an insurance company or hedge fund. In fi gure 
10.5, Bank A, the benefi ciary, has contracted to pay the total return—
interest payments plus any appreciation in market value—on the reference 
asset. The appreciation may be cash settled, or Bank A may take physical 
delivery of the reference asset at swap maturity, paying Bank B, the total 
return receiver, the initial asset value. Bank B pays Bank A a margin over 
LIBOR and makes up any depreciation that occurs in the price of the 
asset—hence the label “guarantor.” 

The economic effect for Bank B is that of owning the underlying asset. 
TR swaps are thus synthetic loans or securities. Signifi cantly, the benefi -
ciary usually (though not always) holds the underlying asset on its bal-
ance sheet. The TR swap can thus be a mechanism for removing an asset 
from the guarantor’s balance sheet for the term of the agreement. 

The swap payments are usually quarterly or semiannual. On the interest- 
reset dates, the underlying asset is marked to market, either using an inde-
pendent source, such as Bloomberg or Reuters, or as the average of a range 
of market quotes. If the reference asset obligor defaults, the swap may be 
terminated immediately, with a net present value payment changing hands 
and each counterparty liable to the other for accrued interest plus any ap-
preciation or depreciation in the asset value. Alternatively, the swap may 
continue, with each party making appreciation or depreciation payments as 
appropriate. The second option is available only if a market exists for the 
asset, an unlikely condition in the case of a bank loan. The terms of the 
agreement typically give the guarantor the option of purchasing the under-
lying asset from the benefi ciary and then dealing directly with the loan 
defaulter. 

Banks and other fi nancial institutions may have a number of reasons 
for entering into TR swap arrangements. One is to gain off-balance-sheet 
exposure to the reference asset without having to pay out the cash that 
would be required to purchase it. Because the swap maturity rarely match-
es that of the asset, moreover, the swap receiver may benefi t, if the yield 
curve is positive, from positive carry—that is, the ability to roll over the 
short-term funding for a longer-term asset. Higher-rated banks that can 
borrow at Libid can benefi t by funding on-balance-sheet credit-protected 
assets through a TR swap, assuming the net spread of asset income over 
credit-protection premium is positive. 

The swap payer can reduce or remove credit risk without selling the 
relevant asset. In a vanilla TR swap, the total return payer retains rights 
to the reference asset, although, in some cases, servicing and voting rights 
may be transferred. At swap maturity, the swap payer can reinvest the as-
set, if it still owns it, or sell it in the open market. The swap can thus be 
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considered a synthetic repo—that is, an arrangement in which the holder 
of a bond (usually a government issue) sells it to a lender, promising to buy 
it back a short time later at an agreed-upon price that gives the lender a 
low-risk rate of return, termed the repo rate.

Total return swaps are increasingly used as synthetic repo instruments, 
most commonly by investors who wish to purchase the credit exposure of 
an asset without purchasing the asset itself. This is similar to what hap-
pened when interest rate swaps were introduced, enabling banks and other 
fi nancial institutions to trade interest rate risk without borrowing or lend-
ing cash funds. Banks usually enter into synthetic repos to remove assets 
from their balance sheets temporarily. The reason may be that they are 
due to be analyzed by credit-rating agencies, or their annual external audit 
is imminent, or they are in danger of breaching capital limits between 
quarterly return periods. In the last case, as the return period approaches, 
lower-quality assets may be removed from the balance sheet by means of 
a TR swap with, say, a two-week term that straddles the reporting date. 
Bonds sold as part of a TR swap transaction are removed from the seller’s 
balance sheet because the bank selling the assets is not legally required 
to repurchase them from the swap counterparty, nor is the total return 
payer obliged to sell them back—or indeed to sell them at all—at swap 
maturity. 

TR swaps may also be used for speculation. Bond traders who believe 
that a particular bond not currently on their books is about to decline in 
price have a couple of ways to profi t from this view. One method is to sell 
the bond short and cover their position through a repo. The cash fl ow to 
the traders from this transaction consists of the coupon on the bond that 
they owe as a result of the short sale and, if the shorted bond falls in price 
as expected, the capital gain from the short sale plus the repo rate—say, 
LIBOR plus a spread. The danger in this transaction is that if the shorted 
bond must be covered through a repo at the special rate instead of the 
higher general collateral rate—the one applicable to Treasury securities—
the traders will be funding it at a loss. The yield on the bond must also be 
lower than the repo rate.

Alternatively, the traders can enter into a TR swap in which they pay 
the total return on the bond and receive LIBOR plus a spread. If the 
bond yield exceeds the LIBOR payment, the funding will be negative, but 
the trade will still gain if the bond falls in price by a suffi cient amount. 
The traders will choose this alternative if the swap’s break-even point—
the price to which the bond must decline for a gain from the short sale to 
offset the trade’s funding cost—is higher than in the repo approach. This 
is more likely if the bond is special. 
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Investment Applications
This section explores the ways bond investment managers typically use 
credit derivatives.

Capital Structure Arbitrage
In capital structure arbitrage, investors exploit yield mismatches between 
two loans from the same reference entity. Say an issuer has two debt in-
struments outstanding: a commercial bank loan paying 330 basis points 
over LIBOR and a subordinated bond issue paying LIBOR plus 230 basis 
points. This yield anomaly can be exploited with a total return swap in 
which the arbitrageur effectively purchases the bank loan and sells the 
bond short. 

The swap is diagrammed in FIGURE 10.6. The arbitrageur receives the 
total return on the bank loan and pays the counterparty bank the bond 
return plus an additional 30 basis points, the price of the swap. These rates 
are applied to notional amounts of the loan and bond set at a ratio of 2 to 
1, since the bond’s price is more sensitive to changes in credit status than 
that of the loan.   

The swap generates a net spread of 200 basis points as shown below: 
+ [(100 bps × ½) + (250 bps × ½)]. That is, 

 
 

Receive Loan Libor+ Loan Notional Principal

Bon

CF = +( )× ( )330 1

dd Libor+ Bond Notional PrincipalCF = − +( )× ( )230 30 0 5.

Exposure to Market Sectors
To gain exposure to sectors where, for various reasons, they do not wish to 
make actual purchases, investors can use a variation on a TR swap called 
an index swap, in which one of the counterparties pays a total return tied 
to an external reference index and the other pays a LIBOR-linked coupon 
or the total return of another index. Indexes used include those for gov-
ernment bonds, high-yield bonds, and technology stocks. Investors who 
believe that the bank loan market will outperform the mortgage-backed 
bond sector, for instance, might enter into an index swap in which they 
pay the total return of the mortgage index and receive the total return of 
the bank-loan index.

Credit Spreads
Credit default swaps can be used to trade credit spreads. Say investors 
believe the credit spread between certain emerging-market government 
bonds and U.S. Treasuries is going to widen. The simplest way to exploit 
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this view would be to go long a credit default swap on the emerging-
market bonds paying 600 basis points. If the investors’ view is correct and 
the bonds’ credit spread widens, depressing their price, the premium pay-
able on the credit swap will increase. The investors will then be able to sell 
their swap in the market at the higher premium.

Funding Positions
Investment banks and hedge funds often use TRS contracts to pay for 
positions in securities that they cannot—for operational, credit, or other 
reasons—fund using the interbank market or a classic repo. The TRS 
counterparty that is long the security swaps it with a counterparty that 
provides the money to pay for the asset in the market. This money is in 
effect a loan to the asset seller, at a cost of LIBOR plus a spread. Dur-
ing the swap term, the funds provider pays the asset seller the coupon/
interest on the asset. On the swap-reset or maturity date, the asset is 
marked to market. If it has increased in value, the funds provider will 
pay the asset seller the difference; if it has fallen, the asset seller will pay 
the difference. The asset seller also pays the LIBOR-plus interest on the 
initial swap proceeds. In addition to funding the asset, this transaction 
removes it from the original holder’s balance sheet, transferring it to the 
counterparty’s for the term of the swap. As an illustration of how this 
works, consider the hypothetical transaction in FIGURE 10.7 on the fol-
lowing page.

Note that the “haircut” is the amount of the bond value that is not 
handed over in the loan proceeds—it acts as a credit protection to the 
provider of funds in the event that the bond, which is in effect the col-
lateral for the loan, drops in value during the term of the swap. For ease of 
illustration the haircut in this example is 0 percent so the loan is the full 
value of the bond collateral. 

FIGURE 10.6  Total Return Swap Used in Capital Structure 
Arbitrage

Bond total return plus LIBOR + 30bps

Bank loan total return

Investor TR Bank
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Assume that, at swap maturity, the stock has risen in price to 99.70, 
making its market value $49,850,000. The investment bank would there-
fore owe the hedge fund a “performance payment” of $100,000. The 
hedge fund, meanwhile, owes the investment bank $27,690.71, which 
is 1.43125 percent interest on $49,750,000 for fourteen days. The bank 
pays the fund a net payment of $72,309. If there was a coupon payment 
during the term, it would be paid by the investment bank as part of the 
performance payment to the hedge fund. 

Credit-Derivative Pricing
Banks employ a number of methods to price credit derivatives. This sec-
tion presents a quick overview. Readers wishing a more in-depth discus-
sion should consult the references listed for this chapter in the References 
section. 

FIGURE 10.7  Using a Total Return Swap to Fund a Security

Party A: Asset seller, a hedge fund

Party B: Funds provider, an investment bank

Asset: $50 million face value of an A-rated asset-backed security

Price: 99.50

Asset value: $49,750,000

Date when swap is transacted: February 3, 2004

Value date: February 6, 2004

Swap term: 14 days

Maturity date: February 20, 2004

Haircut: 0 percent 

Initial swap proceeds: $49,750,000

Floating rate paid by the asset seller: LIBOR plus 35 basis points

2-week LIBOR at start of swap: 1.08125 percent

Swap fl oating rate: 1.43125 percent
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Credit-derivative pricing is similar to the pricing of other off-balance-
sheet products, such as equity, currency, and bond derivatives. The main 
difference is that the latter can be priced and hedged with reference to 
the underlying asset, and credit derivatives cannot. The pricing model for 
credit products incorporates statistical data concerning the likelihood of 
default, the probability of payout, and market level of risk tolerance. 

Pricing Total Return Swaps
The guarantor in a TR swap usually pays the benefi ciary a spread over 
LIBOR. Pricing in this case means determining the size of the LIBOR 
spread. This spread is a function of the following factors:

❑ The credit rating of the benefi ciary
❑ The credit quality of the reference asset 
❑ The face amount and value of the reference asset
❑ The funding costs of the benefi ciary bank
❑ The required profi t margin
❑  The capital charge—the amount of capital that must be held 

against the risk represented by the swap—associated with the TR 
swap

Related to these factors are several risks that the guarantor must take 
into account. One crucial consideration is the likelihood of the TR swap 
receiver defaulting at a time when the reference asset has declined in value. 
This risk is a function both of the fi nancial health of the swap receiver 
and of the market volatility of the reference asset. A second important 
consideration is the probability of the reference asset obligor defaulting, 
triggering a default by the swap receiver before the swap payer receives the 
depreciation payment.

Asset-Swap Pricing
Asset-swap pricing is commonly applied to credit-default swaps, especially 
by risk management departments seeking to price the transactions held on 
credit traders’ book. A par asset swap typically combines an interest rate 
swap with the sale of an asset, such as a fi xed-rate corporate bond, at par 
and with no interest accrued. The coupon on the bond is paid in return 
for LIBOR plus, if necessary, a spread, known as the asset-swap spread. 
This spread is the price of the asset swap. It is a function of the credit risk 
of the underlying asset. That makes it suitable as the basis for the price 
payable on a credit default swap written on that asset. 

The asset swap spread is equal to the underlying asset’s redemption 
yield spread over the government benchmark, minus the spread on the 
associated interest rate swap. The latter, which refl ects the cost of convert-
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ing the fi xed-rate coupons of benchmark bonds to a fl oating rate during 
the life of the asset, or the default swap, is based on the swap rate for the 
relevant term.

Credit-Spread Pricing Models
Practitioners increasingly model credit risk as they do interest rates and 
use spread models to price associated derivatives. One such model is the 
Heath-Jarrow-Morton (HJM) model described in chapter 4. This ana-
lyzes interest rate risk, default risk, and recovery risk—that is, the rate 
of recovery on a defaulted loan, which is always assumed to retain some 
residual value.

The models analyze spreads as wholes, rather than splitting them into 
default risk and recovery risk. Das (1999), for example, notes that equa-
tion (10.1) can be used to model credit spreads. Credit options can thus 
be analyzed in the same way as other types of options, modeling the credit 
spread rather than, say, the interest rate.

 ds k s dt sdZ= −( ) +ϑ σ  (10.1)

where
s = the credit spread over the government benchmark 
ds = change in the spread over an infi nitesimal change in time 
k = the mean reversion rate of the credit spread 
θ = the mean of the spread over t 
σ = the volatility of the spread 
dt = change in time
dZ = standard Brownian motion or Weiner process

For more detail on modeling credit spreads to price credit derivatives, 
see Choudhry (2004).
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C H A P T E R  1 1

The Analysis of Bonds with 
Embedded Options

The yield calculation for conventional bonds is relatively straight-
forward. This is because their redemption dates are fi xed, so their 
total cash fl ows—the data required to calculate yield to maturity—

are known with certainty. Less straightforward to analyze are bonds with 
embedded options—calls, puts, or sinking funds—so called because the op-
tion element cannot be separated from the bond itself. The diffi culty in 
analyzing these bonds lies in the fact that some aspects of their cash fl ows, 
such as the timing or value of their future payments, are uncertain. 

Because a callable bond has more than one possible redemption date, its 
future cash fl ows are not clearly defi ned. To calculate the yield to maturity 
for such a bond, it is necessary to assume a particular redemption date. The 
market convention is to use the earliest possible one if the bond is priced 
above par and the latest possible one if it is priced below par. Yield calculated 
in this way is sometimes referred to as yield to worst (the Bloomberg term). 

If a bond’s actual redemption date differs from the assumed one, its 
return computed this way is meaningless. The market, therefore, prefers 
to use other methods to calculate the return of callable bonds. The most 
common method is option-adjusted spread, or OAS, analysis. Although the 
discussion in this chapter centers on callable bonds, the principles enunci-
ated apply to all bonds with embedded options.  

Understanding Option Elements Embedded in a Bond
Consider a callable U.S.-dollar corporate bond issued on December 1, 
1999, by the hypothetical ABC Corp. with a fi xed semiannual coupon of 
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6 percent and a maturity date of December 1, 2019. FIGURE 11.1 shows 
the bond’s call schedule, which follows a form common in the debt mar-
ket. According to this schedule, the bond is fi rst callable after fi ve years, 
at a price of $103; after that it is callable every year at a price that falls 
progressively, reaching par on December 1, 2014, and staying there until 
maturity.

The call schedule works like this. If market interest rates rise after the 
bonds are issued, ABC Corp. gains, because it is incurring below-market 
fi nancing costs on its debt. If rates decline, investors gain, because the 
value of their investment rises. Their upside, however, is capped at the 
applicable call price by the call provisions, since the issuer will redeem the 
bond if it can reduce its funding costs by doing so.

Basic Options Features 
An option is a contract between two parties: the option buyer and the op-
tion seller. The buyer has the right, but not the obligation, to buy or sell an 
underlying asset at a specifi ed price during a specifi ed period or at a speci-
fi ed time (usually the expiry date of the contract). The price of an option 

FIGURE 11.1  Call Schedule for the ABC Corp. 6 Percent Bond 
Due December 2019

  DATE CALL PRICE

01-Dec-2004 103.00

01-Dec-2005 102.85

01-Dec-2006 102.65

01-Dec-2007 102.50

01-Dec-2008 102.00

01-Dec-2009 101.75

01-Dec-2010 101.25

01-Dec-2011 100.85

01-Dec-2012 100.45

01-Dec-2013 100.25

01-Dec-2014 100.00
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is known as its premium, which is paid by the buyer to the seller, or writer. 
An option that grants the holder the right to buy the underlying asset is 
known as a call option; one that grants the right to sell the underlying asset 
is a put option. The option writer is short the contract; the buyer is long. 

If the owner of an option elects to exercise it and enter into the under-
lying trade, the option writer is obliged to execute under the terms of the 
contract. The price at which an option specifi es that the underlying asset 
may be bought or sold is the exercise, or strike, price. The expiry date of 
an option is the last day on which it may be exercised. Options that can 
be exercised anytime from the day they are struck up to and including the 
expiry date are called American options. Those that can be exercised only 
on the expiry date are known as European options.

The profi t-loss profi le for option buyers is quite different from that for 
option sellers. Buyers’ potential losses are limited to the option premium, 
while their potential profi ts are, in theory, unlimited. Sellers’ potential 
profi ts are limited to the option premium, while their potential losses are, 
in theory, unlimited; at the least, they can be very substantial. (For a more 
in-depth discussion of options’ profi t-loss profi le, see chapter 8.)

Option Valuation 
The References section contains several works on the technical aspects of 
option pricing. This section introduces the basic principles. 

An option’s value, or price, is composed of two elements: its intrinsic 
value and its time value. The intrinsic value is what the holder would realize 
if the option were exercised immediately—that is, the difference between 
the strike price and the current price of the underlying asset. To illustrate, 
if a call option on a bond has a strike price of $100 and the underlying 
bond is currently trading at $103, the option has an intrinsic value of 
$3. The holder of an option will exercise it only if it has intrinsic value. 
The intrinsic value is never less than zero. An option with intrinsic value 
greater than zero is in the money. An option whose strike price is equal to 
the price of the underlying is at the money; one whose strike price is above 
(in the case of a call) or below (in the case of a put) the underlying’s price 
is out of the money. 

An option’s time value is the difference between its intrinsic value and 
its premium. Stated formally,

 Time value Premium Intrinsic value= −

The premium of an option with zero intrinsic value is composed solely 
of time value. Time value refl ects the potential for an option to move 
more deeply into the money before expiry. It diminishes up to the option’s 
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expiry date, when it becomes zero. The price of an option on expiry is 
composed solely of intrinsic value.

The main factors determining the price of an option on an interest 
rate instrument such as a bond are listed below. (Their effects will differ 
depending on whether the option in question is a call or a put and whether 
it is American or European.)

❑  the option’s strike price 
❑  the underlying bond’s current price and its coupon rate
❑  the time to expiry
❑  the short-term risk-free rate of interest during the life of the op-

tion
❑  the expected volatility of interest rates during the life of the op-

tion

A number of option-pricing models exist. Market participants often 
use variations on these models that they developed themselves or that were 
developed by their fi rms. The best-known of the pricing models is prob-
ably the Black-Scholes, whose fundamental principle is that a synthetic 
option can be created and valued by taking a position in the underlying 
asset and borrowing or lending funds in the market at the risk-free rate 
of interest. Although Black-Scholes is the basis for many other option 
models and is still used widely in the market, it is not necessarily appropri-
ate for some interest rate instruments. Fabozzi (1997), for instance, states 
that the Black-Scholes model’s assumptions make it unsuitable for certain 
bond options. As a result a number of alternatives have been developed to 
analyze callable bonds.

The Call Provision
A bond with early redemption provisions is essentially a portfolio consist-
ing of a conventional bond having the same coupon and maturity and a 
put or call option on this bond. The value of the bond is the sum of the 
values of these “portfolio” elements. This is expressed formally as (11.1).

 P P Pbond underlying option= ±  (11.1)

For a conventional bond, the value of the option component is zero. 
For a putable one, the option has a positive value. The portfolio represent-
ed by a putable bond contains a long position in a put, which, by acting as 
a fl oor on the bond’s price, increases the bond’s attractiveness to investors. 
Thus the greater the value of the put, the greater the value of the bond. 
This is expressed in (11.2).
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 P P Ppbond underlying put= +  (11.2)

A callable bond is essentially a conventional bond plus a short position 
in a call option, which acts as a cap on the bond’s price and so reduces 
its value. If the value of the call option were to increase because of a fall 
in interest rates, therefore, the value of the callable bond would decrease. 
This is expressed in (11.3).

 P P Pcbond underlying call= −   (11.3)

The difference between the price of the option-free bond and the call-
able bond at any time is the price of the embedded call option. The behav-
ior of the option element depends on the terms of the callable issue. 

If the issuer of a callable bond is entitled to call it at any time after the 
fi rst call date, the bondholder has effectively sold the issuer an American 
call option. However, as fi gure 11.1 illustrates, the redemption value may 
vary with the call date. This is because the value of the underlying bond at 
the time the call is exercised is composed of the sum of the present values 
of the remaining coupon payments that the bondholder would have re-
ceived had the issue not been called. Of course, the embedded option does 
not trade on its own. Nevertheless, it is clear that embedded options infl u-
ence signifi cantly not only a bond’s behavior but its valuation as well. 

The Binomial Tree of Short-Term Interest Rates
Chapter 3 discussed how a coupon-bond yield curve could be used to 
derive spot (zero-coupon) and implied forward rates. A forward rate is the 
interest rate for a term beginning at a future date and maturing one period 
later. Forward rates form the basis of binomial interest rate trees. 

Any models using implied forward rates to generate future prices for 
options’ underlying bonds would be assuming that the future interest rates 
implied by the current yield curve will actually occur. An analysis built on 
this assumption would, like yield-to-worst analysis, be inaccurate, because 
the yield curve does not remain static and neither do the rates implied by 
it; therefore future rates can never be known with certainty. To avoid this 
inaccuracy, a binomial tree model assumes that interest rates fl uctuate over 
time. These models treat implied forward rates, sometimes referred to as 
short rates, as outcomes of a binomial process, resulting in a binomial tree of 
possible short rates for each future period. A binomial tree is constructed by 
starting from a known interest rate at period 0, and assuming that during 
the following period, rates can travel along two possible paths, each result-
ing in a different rate one period forward; those two future rates each serve 
as the origin for two more paths, resulting in four possible rates at the end 
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of the next period forward, and so on. The tree is called binomial because 
at each future state, or node, there are precisely two possible paths ending 
in two possible interest rates for the next period forward.

Arbitrage-Free Pricing 
Assume that the current six-month and one-year rates are 5.00 and 5.15 
percent, respectively. Assume further that six months from now the six-
month rate will be either 5.01 or 5.50 percent, and that each rate has a 50 
percent probability of occurring. Bonds in this hypothetical market pay 
semiannual coupons, as they do in the U.S. and U.K. domestic markets. 
This situation is illustrated in FIGURE 11.2.

Figure 11.2 is a one-period binomial interest rate tree, or lattice, for 
the six-month interest rate. From this lattice, the prices of six-month and 
1-year zero-coupon bonds can be calculated. As discussed in chapter 3, 
the current price of a bond is equal to the sum of the present values of 
its future cash fl ows. The six-month bond has only one future cash fl ow: 
its redemption payment at face value, or 100. The discount rate to derive 
the present value of this cash fl ow is the six-month rate in effect at point 
0. This is known to be 5 percent, so the current six-month zero-coupon 
bond price is 100/(1 + [0.05/2]), or 97.56098. The price tree for the six-
month zero-coupon bond is shown in FIGURE 11.3.

For the six-month zero-coupon bond, all the factors necessary for pric-
ing—the cash fl ow and the discount rate—are known. In other words, only 
one “world state” has to be considered. The situation is different for the one-
year zero coupon, whose binomial price lattice is shown in FIGURE 11.4.

Deriving the one-year bond’s price at period 0 is straightforward. Once 
again, there is only one future cash fl ow—the period 2 redemption pay-
ment at face value, or 100—and one possible discount rate: the one-year 
interest rate at period 0, or 5.15 percent. Accordingly, the price of the one-
year zero-coupon bond at point 0 is 100/(1 + [0.0515/2]2 ), or 95.0423. 
At period 1, when the same bond is a six-month piece of paper, it has 
two possible prices, as shown in fi gure 11.4, which correspond to the two 
possible six-month rates at the time: 5.50 and 5.01 percent. Since each 
interest rate, and so each price, has a 50 percent probability of occurring, 
the average, or expected value, of the one-year bond at period 1 is [(0.5 × 
97.3236) + (0.5 × 97.5562)], or 97.4399. 

Using this expected price at period 1 and a discount rate of 5 percent 
(the six-month rate at point 0), the bond’s present value at period 0 is 
97.4399/(1 + 0.05/2), or 95.06332. As shown above, however, the market 
price is 95.0423. This demonstrates a very important principle in fi nancial 
economics: markets do not price derivative instruments based on their 
expected future value. At period 0, the one-year zero-coupon bond is a 
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FIGURE 11.2  The Binomial Price Tree for the Six-Month 
Interest Rate
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riskier investment than the shorter-dated six-month zero-coupon bond. 
The reason it is risky is the uncertainty about the bond’s value in the last 
six months of its life, which will be either 97.32 or 97.55, depending on 
the direction of six-month rates between periods 0 and 1. Investors prefer 
certainty. That is why the period 0 present value associated with the single 
estimated period 1 price of 97.4399 is higher than the one-year bond’s 
actual price at point 0. The difference between the two fi gures is the risk 
premium that the market places on the bond.

Options Pricing 
Assume now that the one-year zero-coupon bond in the example has a 
call option written on it that matures in six months (at period 1) and has 
a strike price of 97.40. FIGURE 11.5 is the binomial tree for this option, 
based on the binomial lattice for the one-year bond in fi gure 11.4. The 
fi gure shows that at period 1, if the six-month rate is 5.50 percent, the call 
option has no value, because the bond’s price is below the strike price. If, 
on the other hand, the six-month rate is at the lower level, the option has 
a value of 97.5562 – 94.40, or 0.1562.

What is the value of this option at point 0? Option pricing theory states 
that to calculate this, you must compute the value of a replicating portfolio. 
In this case, the replicating portfolio would consist of six-month and one-
year zero-coupon bonds whose combined value at period 1 will be zero if 
the six-month rate rises to 5.50 percent and 0.1562 if the rate at that time 
is 5.01 percent. It is the return that is being replicated. These conditions 
are stated formally in equations (11.4) and (11.5), respectively.

 C C1 20 973236 0+ . =  (11.4)

 C1 0 975562 0 1562+ . .=  (11.5)

FIGURE 11.5  The Binomial Tree for a Six-Month Call Option 
Written on the One-Year Zero-Coupon Bond
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where 
C 1 = the face amount of the six-month bond at period 1 
C 2 = the face amount of the one-year bond at period 1

Since the six-month zero-coupon bond in the replicating portfolio ma-
tures at period 1, it is worth 100 percent of face value at point 1, no matter 
where interest rates stand. The value of the one-year at period 1, when it is 
a six-month bond, depends on the interest rate at the time. At the higher 
rate, it is 97.3236 percent of face; at the lower rate, it is 97.5562 percent 
of face. The two equations state that the total value of the portfolio must 
equal that of the option, which at the higher interest rate is zero and at the 
lower 0.1562. 

Solving the two equations gives C 1 = –65.3566 and C 2 = 67.1539. 
This means that to construct the replicating portfolio, you must purchase 
67.15 of one-year zero-coupon bonds and sell short 65.36 of the six-month 
zero-coupon bond. The reason for constructing the portfolio, however, was 
to price the option. The portfolio and the option have equal values. The 
portfolio value is known: it is the price of the six-month bond at period 0 
multiplied by C 1, plus the price of the one-year bond multiplied by C 2, or

 0 9756 65 3566 0 950423 67 1539 0 0627. . . . .×−( )+ ×( ) =  (11.6)

The result of this calculation, 0.06, is the arbitrage-free price of the 
option: if the option were priced below this, a market participant could 
earn a guaranteed profi t by buying it and simultaneously selling short the 
replicating portfolio; if it were priced above this, a trader could profi t by 
writing the option and buying the portfolio. Note that the probabilities 
of the two six-month rates at point 1 played no part in the analysis. This 
refl ects the arbitrage pricing logic: the value of the replicating portfolio 
must equal that of the option whatever path interest rates take. 

That is not to say that probabilities do not have an impact on the op-
tion price. Far from it. If there is a very high probability that rates will 
increase, as in the example, an option’s value to an investor will fall. This is 
refl ected in the market value of the option or callable bond. When prob-
abilities change, the market price changes as well. 

Risk-Neutral Pricing
Although, as noted, the market does not price instruments using expected 
values, it is possible to derive risk-neutral probabilities that generate 
expected values whose discounted present values correspond to actual 
prices at period 0. The risk-neutral probabilities for the example above are 
derived in (11.7). 
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95 04231
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. .
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p p+ −( )
+

=  (11.7)

where
p = the risk-neutral probability of an interest rate increase
1 – p = the probability of a rate decrease

Solving equation (11.6) gives p = 0.5926 and 1 – p = 0.4074. These 
are the two probabilities for which the probability-weighted average, or 
expected, value of the bond discounts to the true market price. These risk-
neutral probabilities can be used to derive a probability-weighted expected 
value for the option in fi gure 11.5 at point 1, which can be discounted 
at the six-month rate to give the option’s price at point 0. The process is 
shown in (11.8). 

 
0 5926 0 0 4074 0 1562

1 0 05
0 06211

2

. . .
.

.
×( )+ ×( )

+
=  (11.8)

The option price derived in (11.8) is virtually identical to the 0.062 
price calculated in (11.6). Put very simply, risk-neutral pricing works by 
fi rst fi nding the probabilities that result in an expected value for the under-
lying security or replicating portfolio that discounts to the actual present 
value, then using those probabilities to generate an expected value for the 
option and discounting this to its present value. 

Recombining and Nonrecombining Trees
The interest rate lattice in fi gure 11.2 is a one-period binomial tree. Ex-
panding it to show possible rates for period 2 results in a structure like that 
shown in FIGURE 11.6.

The binomial tree in Figure 11.5 is termed nonrecombining, because 
each node branches out to two further nodes. This seems a logical process, 
and such trees are used in the market. Analyses incorporating them, how-
ever, require a considerable amount of computer processing power. 

In period 1 there are two possible levels for the interest rate; at period 
2 there are four possible levels. After N periods, there will be 2 N possible 
values for the interest rate. Calculating the current price of a 10-year 
callable bond that pays semiannual coupons involves generating more 
than one million possible values for the last period’s set of nodes. For a 
20-year bond, the number jumps to one trillion. (Note that the bino-
mial models actually used in analyses have much shorter periods than six 
months, increasing the number of nodes.) 
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For this reason some market practitioners prefer to use recombining 
binomial trees, in which the branch sloping downward from an upper 
node ends at the same interest rate state as the one sloping upward from a 
lower node. This is illustrated in FIGURE 11.7. 

FIGURE 11.6  A Nonrecombining Two-Period Binomial Tree for 
the Six-Month Interest Rate
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FIGURE 11.7  A Recombining Two-Period Binomial Tree for the 
Six-Month Interest Rate
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The number of terminal nodes and possible values is much reduced 
in a recombining tree. A recombining tree with one-week periods used to 
price a 20-year bond, for example, has only 52 × 20 + 1, or 1,041, terminal 
values. 

Pricing Callable Bonds
The tools discussed so far in this chapter are the building blocks of a sim-
ple model for pricing callable bonds. To illustrate how this model works, 
consider a hypothetical bond maturing in three years, with a 6 percent 
semiannual coupon and the call schedule shown in FIGURE 11.8.

The fi rst step in the analysis is to create a risk-neutral recombining 
binomial lattice tracking the evolution of the six-month interest rate. The 
tree’s nodes occur at six-month intervals and at each node the probability 
of an upward move in the rate is equal to that of a downward move. The 
tree is shown in FIGURE 11.9.

The next step is to use this tree to describe the bond’s price evolution, 
ignoring its call feature. The tree is constructed from the fi nal date back-
wards, using the bond’s ex-coupon values. At each node, the ex-coupon 
bond price is equal to the sum of the expected value plus the coupon six 
months forward, discounted at the appropriate six-month yield. At year 
3, the bond’s price at all the nodes is 100.00, its ex-coupon par value. At 
year 2.5, the bond’s price at the highest yield, 7.782 percent, is calcu-
lated by using this rate to discount the bond’s expected price six months 
forward. The price in six months in both the “up” and the “down” state 
is 103.00—the ex-coupon value plus the fi nal coupon payment. The 
bond’s price at this node, therefore, is derived using the risk-neutral pric-
ing formula as follows:

FIGURE 11.8   Call Schedule of a Hypothetical 3-Year 
6 Percent Bond 

   CALL SCHEDULE 

Year 1 103.00

Year 1.5 102.00

Year 2 101.50

Year 2.5 101.00

Year 3 100.00
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 Pbond =
× + ×

+
=

0 5 103 0 5 103

1 0 07782
2

99 14237
. .

. .

The same process is used to obtain the prices for every node at year 2.5 
and then repeated for each node in year 2. At the highest yield for year 2, 
6.769 percent, the two possible future values are 

99.14237 + 3.0 = 102.14237

and

99.79411 + 3.0 = 102.79411 

Therefore the price of the bond in this state is given by

Pbond =
× + ×

+
=

0 5 102 14237 0 5 102 79411

1 0 06769
2

99 11374
. . . .

. .

The procedure is repeated until every node in the lattice is associated 
with a price. The completed lattice is shown in FIGURE 11.10.

FIGURE 11.9  Risk-Neutral Recombining Binomial Tree for the 
Six-Month Interest Rate
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After calculating the prices for the conventional element of the callable 
bond, the next step is to compute the value of the option element. On the 
bond’s maturity date, the option is worthless, because its “strike” is 100, 
which is the price the bond is redeemed at in any case. The option needs 
to be valued, however, at all the other node points.

The holder of the option in the case of a callable bond is the issuing 
company. At each call date during the life of the bond, the option holder 
will elect either to exercise it or to wait till the next date. In making this 
decision, the option holder must consider the following factors:

❑  the value of holding the option for an extra period, denoted by 
PCt

❑  the value of exercising the option straight away, PC

If PCt is greater than PC , the holder will not exercise; if PC is greater 
than PCt , the holder will exercise immediately. The general rule determin-
ing whether PC  or PCt  is greater is that options have more value “alive than 
dead.” The same is true for callable bonds. It is sometimes more advanta-
geous to run an in-the-money option rather than exercise straight away. 
On the other hand, at the year 2.5 call date, there is no value in holding 
the option for another period because it will be worthless at year 3. There-
fore, if the option is in the money, the holder will exercise. 

FIGURE 11.10  The Binomial Price Tree for the Hypothetical 
3-Year 6 Percent Bond, Ignoring the Call Provision
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A number of factors dictate whether an option is exercised or not. The 
fi rst is the asymmetric profi t-loss profi le of option holders: their potential gain 
is theoretically unlimited when the price of the “underlying” asset rises, but 
they lose only their initial investment if the price falls. This asymmetry favors 
running an option position. Another consideration favoring holding is the 
fact that the option’s time value is lost if it is exercised early. In callable bonds, 
the call price often decreases as the bond approaches maturity. This creates 
an incentive to delay exercise until a lower strike price is available. Coupon 
payments, on the other hand, may favor earlier exercise, since, in the case of a 
normal, nonembedded option, this allows the holder to earn interest sooner.

The general process of valuing embedded options works as follows: say 
the value of the option for immediate exercise is Vt , the value of the option 
held for a further period is VT , and the value of the option at any node is V. 
These values are defi ned by equations (11.9), (11.10), and (11.11).

 V V V
rT

h l=
+
+

0 5 0 5
1 1

2

. .  (11.9)

where 
Vh = the value of the option in the up state
Vl t = the value of the option in the down state 
r = the six-month interest rate at the specifi ed node

 V P St = −( )max ,0  (11.10)

where 
P = the bond’s value at the specifi ed node
S = the call option strike price, determined by the call schedule 

 V V VT t= ( )max , .  (11.11)

The option value binomial tree, shown in FIGURE 11.11, is constructed 
by applying the appropriate expressions at each node, starting at the fi nal 
period and working backward in time.

It is now possible to complete the price tree for the callable bond. Re-
member that the option in the case of a callable bond is held by the issuer. 
Its value, given by the tree in fi gure 11.11, must therefore be subtracted 
from the conventional bond price, given by the tree in fi gure 11.10, to ob-
tain the callable bond value. For instance, the current price of the callable 
bond is 105.875 – 0.76, or 105.115. FIGURE 11.12 shows the tree that 
results from this process. A tree constructed in this way, which is  program-
mable into a spreadsheet or as a front-end application, can be used to price 
either a callable or a putable bond.
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FIGURE 11.11  Binomial Price Tree for the Option Embedded 
in the Callable 3-Year 6 Percent Bond
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FIGURE 11.12  Binomial Price Tree for the Hypothetical Callable 
3-Year 6 Percent Bond
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Price and Yield Sensitivity
As explained in chapter 1, the curve representing a plain vanilla bond’s 
price-yield relationship is essentially convex. The price-yield curve for a 
bond with an embedded option changes shape as the bond’s price ap-
proaches par, at which point the bond is said to exhibit negative convexity. 
This means that its price will rise by a smaller amount for a decline in yield 
than it will fall for a rise in yield of the same magnitude. FIGURE 11.13 
summarizes the price-yield relationships for both negatively and positively 
convex bonds. 

Callable bonds exhibit negative convexity as interest rates fall. Option-
adjusted spread analysis highlights this relationship by effecting a parallel 
shift in the benchmark yield curve, holding the spread constant, and cal-
culating the theoretical prices along the nodes of the binomial price tree. 
The average present value is the projected price for the bond. FIGURE 11.14 
shows how this process affects the price-yield relationship of a hypotheti-
cal callable bond by comparing it with that of a conventional bond having 
the same coupon and maturity. Note that once the market rate falls below 
10 percent, the callable bond exhibits negative convexity. This is because 
the embedded option is exercisable at that point, effectively capping the 
bond’s price.

The market quotes bonds with embedded options in terms of yield 
spreads. A “cheap” bond trades at a high spread, a “dear” one at a low 
spread. The usual convention is to quote the spread between the redemp-
tion yield of the bond being analyzed and that of a government bond 
having an equivalent maturity. This is not an accurate measure of the 
actual difference in value between the two bonds, however. The reason is 
that, as explained in chapter 1, the redemption yield computation unreal-
istically discounts all a bond’s cash fl ows at a single rate. 

A better measure of the relative value of a bond with an embedded 

FIGURE 11.13   Price-Yield Relationships Associated with 
 Negative and Positive Convexity

 PERCENT PRICE CHANGE FOR
   CHANGE IN YIELD   POSITIVE CONVEXITY  NEGATIVE CONVEXITY

Fall of 100 bp   X%    Lower than Y%

Rise of 100 bp   Lower than X%     Y%
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option is the constant spread that, when added to all the short-rates in 
the binomial tree, makes the bond’s theoretical (model-derived) price 
equal to its observed market price. The constant spread that satisfi es this 
requirement is the option-adjusted spread. It is “option-adjusted” because 
it refl ects the option feature attached to the bond. 

The OAS depends on the volatility level assumed in applying the 
model. For a given price, the higher the specifi ed volatility, the lower the 
spread for a callable bond and the higher the spread for a putable one. 
Since the OAS is usually calculated relative to a government spot- or 
forward-rate curve, it refl ects the credit and liquidity premiums over the 
government bond that are assigned to the corporate bond. OAS analysis 
depends on the valuation model being used and is only as accurate as the 
model itself.

Measuring Bond Yield Spreads
The binomial model evaluates a bond’s return by measuring the extent to 
which it exceeds those determined by the risk-free short rates in the tree. 
The spread between these returns is the bond’s incremental return at a 
specifi ed price. Determining the spread involves the following steps: 

❑  the binomial tree is used to derive a theoretical price for the bond

FIGURE 11.14  Projected Prices for Callable and Conventional 
Bonds with Identical Coupons and Final Maturity 
Dates
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❑  this theoretical price is compared with the bond’s observed market 
price

❑  if the two prices differ, the rates in the binomial model are adjusted 
by a user-specifi ed amount, which is the estimated spread

❑  a new theoretical price is derived using the adjusted rates and com-
pared with the observed one

❑  the previous two steps are repeated until the two prices are the 
same

Price Volatility of Bonds with Embedded Options
As explained in chapter 2, the duration for any bond may be calculated 
using equation (11.12) (assuming annualized yields).

 D
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t

n

=
+( )

=
∑ 1

1  (11.12)

where 
Ct = the bond cash fl ow at time t
P = the bond’s fair price
C = the annual coupon payment
rm = the redemption yield 
n = the number of years to maturity

To calculate the modifi ed duration of a bond with an embedded op-
tion, the bondholder must assume a fi xed maturity date based on the 
bond’s current price. When it is unclear what redemption date to use, 
modifi ed duration may be calculated to both the fi rst call date and the 
fi nal maturity date. This is an unsatisfactory compromise, however, since 
neither date, and so neither measure, may be appropriate. The problem is 
more acute for bonds that are continuously callable or putable from the 
fi rst call or put date until maturity. 

Effective Duration
It is possible to overcome some of the drawbacks of traditional duration 
by using OAS analysis to derive a bond’s effective duration. As will be dis-
cussed in chapter 14, effective duration is based on approximate duration. 
Following Fabozzi (1997), approximate duration is derived using equation 
(11.13). 

 
D

P P
P rmapprox =
−

( )
− +

2 0 ∆  (11.13)



208                               Selected Cash and Derivative Instruments

where
P0 = the initial price of the bond
P_ = the estimated price of the bond if the yield falls by ∆rm
P+ = the estimated price of the bond if the yield rises by ∆rm
∆rm  = the change in the yield of the bond

Effective duration recognizes that yield changes may effect the future 
cash fl ow of a bond and so its price. For bonds with embedded options 
the difference between traditional duration and effective duration can be 
signifi cant. The effective duration of a callable bond, for example, is some-
times half its traditional duration. As noted in chapter 14, for mortgage-
backed securities, the difference is sometimes greater still. 

Effective duration may be calculated using the binomial model and 
equation (11.13), as follows: 

❑  calculate the bond’s OAS spread 
❑  apply a downward parallel shift to the benchmark yield 
❑  construct an adjusted binomial tree using the new yield curve
❑  add the OAS adjustment to the short rate at each of the tree’s 

nodes 
❑  use the modifi ed binomial tree—shown in Figure 11.9—to calcu-

late the new value of the bond
❑  substitute this new price for P+ in equation (11.13)

The same steps are used to derive P_, except that the yield curve is shifted 
upward instead of downward. The effective duration of bonds containing 
embedded options is often referred to as option-adjusted spread duration. 
This measure has two advantages. The fi rst is that it takes into account the 
interest-rate-dependent behavior of the embedded option and thus of the 
bond’s cash fl ows. This is done by incorporating the binomial tree and hold-
ing the bond’s OAS constant over the specifi ed interest rate shifts, in effect 
maintaining the credit spread demanded by the market. The second, and 
possibly more signifi cant, advantage is that OAS duration is based on a par-
allel shift in the benchmark yield curve and so links changes in a bond’s price 
to changes in market interest rates rather than to shifts in its own yield.

Effective Convexity
Just as standard duration is not appropriate for bonds with embedded op-
tions, neither is traditional convexity. This is because traditional convexity, 
like traditional duration, fails to take into account the impact on a bond’s 
future cash fl ows of a change in market interest rates. As discussed in chap-
ter 14, the approximate convexity of any bond may be derived, following 
in Fabozzi (1997), using equation (11.14).
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If the prices used for P+, P_, and P0 are calculated assuming that the 
bond’s remaining cash fl ows will not change when market rates do, the 
convexity computed is for an option-free bond. For bonds with embedded 
options, the prices used in the equation should be derived using a bino-
mial model, in which the cash fl ows do change with interest rates. The 
result is effective or option-adjusted convexity. 

Sinking Funds
In some markets, most prominently in the United States, corporate bond 
issuers set up sinking fund provisions. A sinking fund allows the issuer to 
redeem the principal using one of two methods: by purchasing the stipu-
lated amount of bonds in the open market and delivering them to the 
trustee for cancellation or by calling the required amount of the bonds at 
par. The second option is, in effect, a partial call—that is, a call involving 
only a fraction of the issue. The bonds called are generally selected ran-
domly, by certifi cate serial numbers. 

The method the issuer chooses to fulfi ll the sinking fund requirement 
is a function of the interest rate level. If interest rates have risen since the 
bond was issued, depressing the bond’s price, the issuer will purchase the 
required amount of bonds in the open market. If interest rates have fallen, 
it will call the specifi ed amount at par. As an illustration, consider the hy-
pothetical ABC bond whose terms are listed in FIGURE 11.15.

According to the terms in fi gure 11.15, the ABC bond pays an 
8 percent coupon and is set to mature in 2019. It also contains a provision 
stating that the issuer will redeem $50 million of the bond’s $100 million 

FIGURE 11.15   A Hypothetical Bond with a Sinking Fund

Issuer ABC plc

Issue date 1–Dec–99

Maturity date 1–Dec–19

Nominal $5 million

Coupon 8%

Sinking fund provision $5 million December 1, 2009 to 2018
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face value over ten years. This is the formal provision. The actual payments 
made may differ.

ABC has in effect embedded ten European options in the bond, each 
relating to $5 million nominal of the bonds and each expiring on December 
1 of a different year, starting in 2009 and ending with 2018. The decision to 
exercise the options as they mature is made using the binomial-tree method 
discussed earlier. 
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Infl ation-Indexed Bonds

Certain countries have markets in bonds whose coupon or fi nal 
redemption payment, or both, are linked to their consumer price 
indexes. Generally, the most liquid markets in these infl ation-

indexed, or index-linked, debt instruments are the ones for government 
issues. Investors’ experiences with the bonds differ, since the securi-
ties were introduced at different times in different markets and so are 
designed differently. In some markets, for instance, only the coupon 
payment, and not the redemption value, is index-linked. This makes 
comparisons in terms of factors such as yield diffi cult and has in the 
past hindered arbitrageurs seeking to exploit real yield differences. This 
chapter highlights the basic concepts behind indexed bonds and how 
their structures may differ from market to market.  

Basic Concepts
The features considered in the design of index-linked bonds are the 
type of index, the indexation lag, the coupon frequency, and the type 
of indexation.

Choice of Index 
In principle, bonds can be linked to almost any variable, including vari-
ous price indexes, earnings measures, GDP output, specifi c commodities, 
and the exchange rate of foreign currencies against another currency. 
Ideally, the chosen index should refl ect the hedging requirements of both 
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FIGURE 12.1  Bloomberg DES Screen for the July 2013 TIPS
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FIGURE 12.2  Bloomberg DES Screen for the July 2003 
Consumer Price Index
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the issuer and the investor. Their needs, however, may not coincide. For 
instance, retail investors overwhelmingly favor indexation to consumer 
prices, to hedge against infl ation, which erodes bond earnings. Pension 
funds, on the other hand, prefer linking to earnings levels, to offset 
their earnings-linked pension liabilities. In practice, most bonds have 
been tied to infl ation indexes, since these are usually widely circulated 
and well understood and issued on a regular basis. U.S. TIIS (Treasury 
infl ation-indexed securities), or TIPS (Treasury infl ation-protected securi-
ties), for instance, are linked to the U.S. Consumer Price Index (CPI-U), 
the non–seasonally adjusted average of prices for urban consumers. The 
securities’ daily interest accrual is based on straight-line interpolation, and 
there is a three-month lag. So, for example, the October 2003 index level 
is used to determine the adjustment for January 1, 2004. FIGURE 12.1 
is the Bloomberg DES (“description”) screen for the TIPS maturing in 
July 2013. FIGURE 12.2 is the DES screen for the CPI index in July 2003, 
which was the base for this security when it was issued. 

Indexation Lag 
To provide precise protection against infl ation, interest payments for a 
given period would need to be corrected for actual infl ation over the same 
period. Lags, however, exist between the movements in the price index and 
the adjustment to the bond cash fl ows. According to Deacon and Derry 
(1998), such lags are unavoidable for two reasons. First, infl ation statistics 
for one month are usually not known until well into the following month 
and are published some time after that. This causes a lag of at least one 
month, as shown in FIGURE 12.3. Second, in some markets the size of a 
coupon payment must be known before the start of the coupon period in 

FIGURE 12.3  The Indexation Lag

MaturityIssue

Lag periodLag period

Complete inflation protection

Inflation protection with lag period

RPIused    RPIon issue RPIused    RPIat maturity
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order to calculate the accrued interest. There is thus a delay between the 
date the coupon amount is fi xed and the time the infl ation rate for the 
period affecting that payment is known that is equal to the length of time 
between coupon payments. Deacon and Derry (1998) also notes that the 
lag can be minimized—for example, by basing the accrued interest calcu-
lation on cumulative movements in the consumer price index since the 
last coupon date, as is done for Canadian Real Return Bonds.  

Coupon Frequency 
Index-linked bonds often pay interest semiannually. Certain long-dated 
investors, such as fund managers whose liabilities include infl ation-indexed 
annuities, may be interested in indexed bonds that pay on a quarterly or 
even monthly basis. 

Type of Indexation
There are fi ve basic methods of linking the cash fl ows from a bond to 
an infl ation index: interest indexation, capital indexation, zero-coupon 
indexation, annuity indexation, and current pay. Which method is cho-
sen depends on the requirements of the issuers and of the investors they 
wish to attract. The principal factors considered in making this choice, 
according to Deacon and Derry (1998), are duration, reinvestment risk, 
and tax treatment.

Interest indexation. Interest-indexed bonds have been issued in 
Australia, although not since 1987. They pay a coupon fi xed rate at a 
real—infl ation-adjusted—interest rate. They also pay a principal adjust-
ment (equal to the percentage change in the CPI from the issue date times 
the principal amount) every period. The infl ation adjustment is thus fully 
paid out as it occurs, and no adjustment to the principal repayment at 
maturity is needed.

Capital indexation. Capital-indexed bonds have been issued in the 
United States, Australia, Canada, New Zealand, and the United Kingdom. 
Their coupon rates are specifi ed in real terms, meaning that the coupon paid 
guarantees the real amount. For example, if the coupon is stated as 2 percent, 
what the buyer really gets is 2 percent after adjustment for infl ation. Each 
period, this rate is applied to the infl ation-adjusted principal amount to 
produce the coupon payment amount. At maturity, the principal repayment 
is the product of the bond’s nominal value times the cumulative change in 
the index since issuance. Compared with interest-indexed bonds of similar 
maturity, these bonds have longer durations and lower reinvestment risk. 

Zero-coupon indexation. Zero-coupon indexed bonds have been is-
sued in Sweden. As their name implies, they pay no coupons; the entire 
infl ation adjustment occurs at maturity, applied to their redemption value. 
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These bonds have the longest duration of all indexed securities and no 
reinvestment risk. 

In the United States, Canada, and New Zealand, indexed bonds can 
be stripped, allowing coupon and principal cash fl ows to be traded sepa-
rately. This obviates the need for specifi c issues of zero-coupon indexed 
securities, since the market can create products such as deferred-payment 
indexed bonds in response to specifi c investor demand. In markets allow-
ing stripping of indexed government bonds, a strip is simply a single cash 
fl ow with an infl ation adjustment. An exception to this is in New Zealand, 
where the cash fl ows are separated into three components: the principal, 
the principal infl ation adjustment, and the infl ation-linked coupons—the 
latter being an indexed annuity.

Annuity indexation. Indexed-annuity bonds have been issued in 
Australia, although not by the central government. They pay a fi xed annu-
ity payment plus a varying element that compensates for infl ation. These 
bonds have the shortest duration and highest reinvestment risk of all 
index-linked debt securities. 

Current pay. Current-pay bonds have been issued in Turkey. They 
are similar to interest-indexed bonds in that their redemption payments 
at maturity are not adjusted for infl ation. They differ, however, in their 
term cash fl ows. Current-pay bonds pay an infl ation-adjusted coupon 
plus an indexed amount that is related to the principal. In effect, they 
are infl ation-indexed fl oating-rate notes.

Duration. Duration measures something slightly different for an 
indexed bond than it does for a conventional bond, indicating price 
sensitivity to changes in real, infl ation-adjusted interest rates, instead of 
in nominal, unadjusted ones. As with conventional bonds, however, the 
duration of zero-coupon indexed bonds is longer than that of equivalent 
coupon bonds. As noted above, indexed annuities will have the short-
est duration of the infl ation-linked securities. Investors with long-dated 
liabilities should theoretically prefer hedging instruments with long 
durations. 

Reinvestment risk. Like holders of a conventional bond, investors in a 
coupon indexed bond are exposed to reinvestment risk: because they can-
not know in advance what rates will be in effect when the bond’s coupon 
payments are made, investors cannot be sure when they purchase their 
bond what yield they will earn by holding it to maturity. Bonds, such as 
indexed annuities, that pay more of their return in the form of coupons 
carry more reinvestment risk. Indexed zero-coupon bonds, like their con-
ventional counterparts, carry none. 

Tax treatment. Tax treatment differs from market to market and from 
product to product.  Some jurisdictions, for example, treat the yearly capi-
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tal gain on zero-coupon bonds as current income for tax purposes. This 
is a serious drawback, since the actual gain is not available until maturity, 
and it reduces institutional demand for these instruments.

Index-Linked Bond Cash Flows and Yields
As noted above, index bonds differ in whether their principal payments or 
their coupons or both are linked to the index. When the principal alone 
is linked, each coupon and the fi nal principal payment are determined by 
the ratio of two values of the relevant index. U.S. TIPS’ coupon payments, 
for instance, are calculated using an accretion factor based on the ratio 
between two CPI-U levels, defi ned by equation (12.1). 

 
IR CPI

CPISetDate
Settlement

Issue
=

 (12.1)

where 
IRSetDate = index ratio 
Settlement = the bond’s settlement date 
Issue = the bond’s issue date 
CPIM-3 = the CPI level three months before the bond’s redemption date

CPISettlement and CPIIssue are the consumer price index levels recorded 
three months before the relevant dates. For a settlement or issue date of 
May 1, for instance, the relevant CPI level would be the one recorded on 
February 1. For a settlement or issue occurring on any day besides the fi rst 
of the month, linear interpolation is used to calculate the appropriate CPI 
level. This is done by subtracting the reference month’s CPI-U level from 
the following month’s level, then dividing the difference by the number 
of days between the readings and multiplying the result by the number 
of days in the month leading up to the reference date. As an illustration, 
consider an issue date of April 7. The relevant index level would be the one 
for January 7. Say the January 1 CPI-U level is 160.5 and the February 1 
level 160.6. The difference between these two values is 

 160.6 – 160.5 = 0.10

Dividing this difference by the number of days between January 1 and 
February 1 gives

 0.10/31 = 0.00322581
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And multiplying the result by the number of days in January before 
the reference date gives

 
 0.00322581 × 6 = 0.19355

So the CPI-U for January 7 is 160.5 + 0.19, or 160.69.

TIPS Cash Flow Calculations
TIPS’ periodic coupon payments and their fi nal redemption payments 
are both calculated using an infl ation adjustment. Known as the infl ation 
compensation, or IC, this is defi ned as in expression (12.2). 

 ICSet Date = (P × IRSetDate) – P (12.2)

where
P = the bond’s principal

The semiannual coupon payment, or interest, on a particular dividend 
date is calculated using equation (12.3).

 Interest C P ICDivDate DivDate= × +( )
2

 (12.3)

where 
C = the annual coupon rate

The principal repayment is computed as in expression (12.4). Note 
that the redemption value of a TIPS is guaranteed by the Treasury to be a 
minimum of 100 percent of the face value. 

 Principal repayment=100  × −CPI
CPI
M 3

0
 (12.4)

where 
CPI0 = the base CPI level—that is, the level three months before the 

bond’s issue date

TIPS Price and Yield Calculations
The price of a TIPS comprises its real price plus any accrued interest, both 
of which are adjusted for infl ation by multiplying them times the index 
ratio for the settlement date. The bond’s unadjusted accrued interest, as 
explained in chapter 1, is calculated using expression (12.5).
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where
f = the number of days from the settlement date to the next coupon 

date 
d = the number of days in the regular semiannual coupon period end-

ing on the next coupon date
C = the unadjusted coupon payment 

The TIP security’s real price is given by equation (12.6).
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r = the TIPS’ real annual yield
RAI = the unadjusted accrued interest 
n = the number of full semiannual coupon periods between the next 

coupon date and the maturity date  

EXAMPLE: TIPS Coupon and Redemption Payment Calculation

Consider a TIPS issued on January 15, 1998, with coupon of 
3.625 percent and a maturity date of January 15, 2008. The 
base CPI-U level for the bond is the one registered in October 
1997. Say this is 150.30. Assume that the CPI for October 2007, 
the relevant computing level for the January 2008 cash fl ows, is 
160.5. Using these values, the fi nal coupon payment and princi-
pal repayment per $100 face value will be:

Coupon payment=
3.625

2
 
160.5
150.3

Principal repayme

× = $ .1 9355

nnt=100  
160.5
150.3

× = $ .106 786
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The markets use two main yield measures for all index-linked bonds: 
the money, or nominal, yield, and the real yield. Both are varieties of yield 
to maturity.

To calculate a money yield for an indexed bond, it is necessary to 
forecast all its future cash fl ows. This requires forecasting all the relevant 
future CPI-U levels. The market convention is to take the latest available 
CPI reading and assume a constant future infl ation rate, usually 2.5 or 
5 percent. The fi rst relevant future CPI level is computed using equa-
tion (12.7).

 CPI CPI m
1 0

12= ×( )1+τ /  (12.7)

where
CPI1 = the forecast CPI level
CPI0 = the latest available CPI
τ = the assumed future annual infl ation rate
m = the number of months between CPI0  and CPI1 

Consider an indexed bond that pays coupons every June and Decem-
ber. To compute its yield, it is necessary to forecast the CPI levels registered 
three months before June and eight months before December—that is, the 
October and April levels. Say this computation takes place in February. 
The fi rst CPI level that must be forecast is thus next April’s. This means 
that in equation (12.7), m = 2. Say the February CPI is 163.7. Assuming 
an annual infl ation rate of 2.5 percent, the CPI for the following April is 
computed as follows.

CPI1 = 163.7 × (1.025)2/12

 = 164.4 

Equation (12.8) is used to forecast the subsequent relevant CPI levels 

 CPI CPIj
j

+
+( )= ×( )1 1

1 21+τ /  (12.8)

where 
j = the number of semiannual forecasts after CPI1 

The forecast CPI level for the following October is calculated as follows.

 
CPI2

1 2= =164.4 1.025 168.5×( ) /
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Once the CPIs have been forecast, the bond’s yield can be calculated. 
Assuming that the analysis is carried out on a coupon date so that accrued 
interest is zero, the money yield of a bond paying semiannual coupons is 
calculated by solving equation (12.9) for ri.
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where 
ri = the semiannual money yield
N = the number of coupon payments (interest periods) up to maturity
M = the bond principal 
C = the unadjusted coupon payment 

The equation for indexed bonds paying annual coupons is (12.10).
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The real yield, ry, fi rst described by Fisher in Theory of Interest (1930), 
is related to the money yield through equation (12.11) (for bonds paying 
semiannual coupons).

 1 1 11
2

1
2

1
2+( ) = +( ) +( )ry ri / τ  (12.11)

To illustrate this relationship, say the money yield is 5.5 percent and 
the forecast infl ation rate is 2.5 percent. The real yield would then be
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Rearranging equation (12.11) to express ri in terms of ry and substi-
tuting the resulting expression for ri in equation (12.9) gives equation 
(12.12), which can be solved to give the real yield, calculated on a coupon 
date, of  index bonds paying semiannual coupons.
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where

CPI CPI
a =

+( )
1

1
1
2τ

CPI0 = the base index level

CPI
CPI

a

o  = the rate of infl ation between the bond’s issue date and the date 
the yield calculation is carried out

The equations for money yield and real yield can be interpreted as indi-
cating what redemption yield to employ as the discount rate in calculating 
the present value of an index bond’s future cash fl ows. From this perspec-
tive, equation (12.9) shows that the money yield is the appropriate rate for 
discounting money, or nominal, cash fl ows. Equation (12.12) shows that 
the real yield is the appropriate rate for discounting real cash fl ows.

Assessing Yields on Index-Linked Bonds
Index-linked bonds do not offer complete protection against a fall in the 
real value of an investment. These bonds, including TIPS, do not have 
guaranteed real returns, despite having their cash fl ows linked to a price 
index such as the CPI. The reason for this is the lag in indexation, which 
for TIPS is three months. The time lag means that an indexed bond is 
not protected against infl ation for the last interest period of its life. Any 
infl ation occurring during the fi nal interest period will not be refl ected 
in the bond’s cash fl ows and will reduce the real value of the redemption 
payment and hence the bond’s real yield. This may not be a major consid-
eration when the infl ation rate is low, but it can be a worry for investors 
when the rate is high. The only way to effectively eliminate infl ation risk is 
to reduce the time lag in indexation of payments to one or two months. 

Bond analysts frequently compare the yields on index-linked bonds 
with those on conventional bonds of the same maturity to determine the 
market’s expectation with regard to infl ation rates. Of course, many fac-
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tors can infl uence the gap between conventional and indexed bond yields, 
including supply and demand and liquidity (conventional bonds are 
generally more liquid than indexed ones). A large part of the difference, 
however, is the infl ation premium, which refl ects the market’s expectations 
about infl ation during the life of the bond. To determine the implied 
expectation, analysts calculate the break-even infl ation rate: the rate for 
which the money yield on an index-linked bond equals the redemption 
yield on a conventional bond of the same maturity. 

As an illustration, say the August 1999 redemption yield on the 5 percent 
Treasury maturing in 2009 was 5.17 percent and the money yield on the 
2 percent TIPS with the same maturity, assuming a constant infl ation rate of 
3 percent, was 2.23 percent. Plugging these values into equations (12.9) and 
(12.10), the implied break-even infl ation rate is computed as follows.
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On the same date, also according to Bloomberg, conventional Treasury 
securities maturing in 2014 had yields to maturity ranging from 6.03 to 
6.54 percent. The lowest conventional yield refl ects expected infl ation of 
approximately 4.27 percent over the ten years to maturity. 

Which to Hold: Indexed or Conventional Bonds?
Accepting that developed, liquid markets, such as that for Treasuries, 
are effi cient, with near-perfect information available to most if not all 
participants, then the infl ation expectation is built into the conventional 
Treasury yield. If the infl ation premium understates what certain market 
participants expect, investors will start buying more of the index-linked 
bond in preference to the conventional bond. This activity will force the 
indexed yield down (or the conventional yield up). If, on the other hand, 
investors think that the implied infl ation rate overstates expectations, they 
will buy more of the conventional bond. 

The higher yields of the conventional bonds compared with those of 
the index-linked bonds represent compensation for the effects of infl ation. 
Bondholders will choose to hold index-linked bonds instead of conven-
tional ones if they are worried about unexpected infl ation. An individual’s 
view on future infl ation will depend on several factors, including the cur-
rent macroeconomic environment and the credibility of the monetary 
authorities, be they the central bank or the government. Fund managers 
take their views of infl ation, among other factors, into account in decid-
ing how much of the TIPS and how much of the conventional Treasury to 
hold. Investment managers often hold indexed bonds in a portfolio against 
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specifi c index-linked liabilities, such as pension contracts that increase their 
payouts in line with infl ation each year.

In certain countries, such as the United Kingdom and New Zealand, 
the central bank has explicit infl ation targets, and investors may believe 
that over the long term those targets will be met. If the monetary authori-
ties have good track records, investors may further believe that infl ation is 
not a signifi cant issue. In such situations, the case for holding index-linked 
bonds is weakened. 

Indexed bonds’ real yields in other markets are also a factor in investors’ 
decisions. The integration of markets around the world in the past twenty 
years has increased global capital mobility, enabling investors to shun 
markets where infl ation is high. Over time, therefore, expected returns 
should be roughly equal around the world, at least in developed and liquid 
markets, and so should real yields. Accordingly, index-linked bonds should 
have roughly similar real yields, whatever market they are traded in. 

The yields on indexed bonds in the United States, for example, 
should be close to those in the U.K. indexed market. In May 1999, 
however, long-dated indexed bonds in the United States were trading at 
a real yield of 3.8 percent, compared with just 2 percent for long-dated 
index-linked gilts. Analysts interpreted this difference as a refl ection of 
the fact that international capital was not as mobile as had been thought 
and that productivity gains and technological progress in the United 
States had boosted demand for capital there to such an extent that the 
real yield had had to rise. 

Analysis of Real Interest Rates
Observing the trading patterns of a liquid market in infl ation-indexed 
bonds enables analysts to draw conclusions about nominal versus real 
interest rates and to construct an infl ation term structure. Such analysis 
is problematic, since conventional and indexed bonds typically differ con-
siderably in liquidity. Nevertheless, as explained above, it is usually pos-
sible to infer market estimates of infl ation expectations from the difference 
between the yields of the two types of bonds.

Indexation Lags and Inflation Expectations
As noted earlier, indexation lags prevent indexed bonds’ returns from be-
ing completely infl ation-proof. According to Deacon and Derry (1998), 
this suggests that an indexed bond can be regarded as a combination of a 
true indexed instrument (with no lag) and an nonindexed bond. Equation 
(12.13) expresses the price-yield relationship for a bond whose indexation 
lag is exactly one coupon period.
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where 
rii = the rate of infl ation between dates i-1 and i 
rm = the redemption yield
C = the coupon payment 
M = the unadjusted redemption payment 
j = the specifi ed interest period
n = term to maturity 

If the bond has just paid the last coupon before its redemption date, 
(12.13) reduces to (12.14).

 P C
rm ri

M
rm ri

=
+( ) +( )

+
+( ) +( )1 1 1 1

 (12.14)

In this situation, the fi nal cash fl ows are not indexed, and the price-yield 
relationship is identical to that for a conventional bond. This, then, represents 
the nonindexed component of the indexed bond. Its yield can be compared 
with those of conventional bonds, making it possible to quantify the index-
ation element. This implies a true real yield measure for the indexed bond. 

To estimate the true real yield, analysts use the Fisher identity, one vari-
ant of which is shown as equation (12.15). 

 1 1 1 1+ = +( ) +( ) +( )y r i ρ  (12.15)

where 
y = the nominal interest rate 
r = the real interest rate 
i = the expected rate of infl ation 
ρ  = the infl ation premium

Essentially, the Fisher identity describes the relationship between 
nominal and real interest rates. Assuming a value for the risk premium 
ρ, the two bond price equations—one for a conventional bond and one 
for an indexed bond—can be linked using (12.15) and solved as a set of 
simultaneous equations to obtain values for the real interest rate and the 
expected infl ation rate. 
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One approach is to determine the expected infl ation rate using the 
difference between the yield on a conventional and that on an indexed 
bond having the same maturity date, if such bonds exist, ignoring any lag 
effects. This, however, is a fl awed measure of infl ation, because the calcula-
tion of the indexed bond’s redemption yield already assumes an expected 
infl ation rate.

As Deacon and Derry (1998, page 91) states, this problem is exacer-
bated if the maturity of both bonds is relatively short, because the less 
time to an indexed bond’s maturity date, the greater the impact of its 
nonindexed component. To overcome this fl aw, the break-even rate of 
infl ation is used. This is derived by using the Fisher identity, with the 
risk premium ρ  set to an assumed fi gure, such as 0, to relate the yield 
on the conventional bond to a yield on the indexed bond derived us-
ing an assumed initial infl ation rate. The result is a new estimate of the 
expected infl ation rate i, which is then used to recalculate the indexed 
bond’s yield. The new yield, in turn, is used to produce a new estimate 
of the expected infl ation rate. The process is repeated until a consistent 
value for i is obtained.

The main drawback with this basic technique is that it requires con-
ventional and index-linked bonds of identical maturity. Using bonds with 
merely similar maturities compromises the results. In addition, the bonds’ 
yields will be infl uenced not only by infl ation expectations but by liquid-
ity, taxation, indexation, and other considerations as well. There is also no 
equivalent benchmark (or on-the-run) indexed security. 

An Inflation Term Structure
Where a liquid market in indexed bonds exists across a reasonable matu-
rity term structure, it is possible to construct a term structure of infl ation 
rates. In essence, the process involves constructing the nominal and real 
interest rate term structures, then using them to infer an infl ation term 
structure. This, in turn, can be used to calculate a forward expected infl a-
tion rate for any term or a forward infl ation curve in the same way that a 
forward interest rate curve is constructed. 

The U.S. Federal Reserve uses an iterative technique to construct a 
term structure of expected infl ation rates. First the nominal interest rate 
term structure is constructed using a version of the model described in 
Waggoner (1997) and discussed in James and Webber (2000). An initial 
assumed infl ation term structure is then used to infer a term structure 
of real interest rates. This assumed infl ation curve is usually set at a 
fl at 3 or 5 percent. The real interest rate curve is then used to calculate 
an implied real interest rate forward curve. Next, the Fisher identity is 
applied at each point along the nominal and real interest rate forward 
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curves, which produces a new estimate of the infl ation term structure. 
A new real interest rate curve is calculated from this. The process is 
repeated until a single consistent infl ation term structure is produced. 
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Hybrid Securities

Up to now, the discussion has centered essentially on plain vanilla 
securities, bonds with a fi xed-coupon and maturity date. How-
ever, much of the fi xed-income markets revolves around more 

complex instruments, arranged to meet specifi c investor requirements. 
These include:

❑ Hybrid securities. Bonds that are made up of a combination of 
one or more securities, or which link their performance to the 
performance of another bond or asset, or an index

❑ Structured notes. Bonds that combine a bond with a derivative 
such as an interest rate swap, or bonds that are created from securi-
tization transactions (see chapter 14)

❑ Swaps. Derivative contracts that exchange payments based on a 
specifi ed notional amount, either as a percent rate (such as an 
interest rate swap) or other quoted cash fl ow

The motivations behind the development and use of more exotic, struc-
tured notes are varied. They include the desire for increased yield without 
additional credit risk, as well as the need to alter, transform, hedge, or 
transfer risk exposure and modify risk-return profi les. These instruments 
have been issued by banks, corporate institutions, and sovereign authori-
ties. They can be tailored to particular risk profi les and enable investors to 
gain exposure to different markets, sometimes synthetically, that they have 
previously been unable to access. For instance, by purchasing structured 
notes, investors can take positions refl ecting their views on exchange rates 
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or the changes they anticipate in the yield curves in different markets. 
This chapter describes a number of structured notes that are currently 

available but by no means covers all the possible variations. That would, in 
fact, be impossible, since, if no existing security meets a particular investor 
or issuer requirement, an investment bank can structure a note that does.

Floating-Rate Notes
Floating-rate notes, or FRNs, are not structured notes. They are described 
here as a prelude to a discussion of inverse fl oating-rate notes, which are 
structured notes. As explained in chapter 1, an FRN is a bond that has a 
variable rate of interest: the coupon rate is linked to a specifi ed index and 
changes periodically to refl ect the current index reading. The notes usually 
pay a fi xed spread over their reference index—for example, 50 basis points 
over the 6-month interbank rate. An FRN whose spread over the reference 
rate is not fi xed is known as a variable-rate note. 

Generally, the reference rate for FRNs is LIBOR, the London inter-
bank offered rate—that is, the rate at which one bank will lend funds to 
another. The interest rate is fi xed for a three- or six-month period, at the 
end of which it is reset. If, say, LIBOR is 7.6875 percent at the coupon 
reset date for a sterling FRN paying six-month LIBOR plus 0.50 percent, 
the FRN will pay 8.1875 percent for the following period, and interest 
will accrue at a daily rate of £0.0224315.

FRNs can have additional features, such as fl oors, which specify 
minimum levels below which the coupon cannot fall; caps, which spec-
ify maximum rates; and calls, which specify possible redemption dates 
before maturity. Perpetual FRNs also exist. As in other markets, borrowers 
frequently issue fl oating notes with specifi c, even esoteric, terms to meet 
particular requirements or customer demands. For example, Citibank 
issued a series of U.S. dollar–denominated FRNs indexed to the Euribor 
rate and another set of notes whose day count was linked to a specifi ed 
LIBOR range.

Because the future values for the reference index are not known, it is 
not possible to calculate the redemption yield of an FRN. On the coupon-
reset dates, the note will be priced precisely at par. Between these dates, it 
will trade very close to par, because of the way the coupon resets. If mar-
ket rates rise between reset dates, the note will trade slightly below par; 
if rates fall, it will trade slightly above par. This makes FRNs’ behavior 
very similar to that of money market instruments traded on a yield basis, 
although, of course, the notes have much longer maturities. FRNs can 
thus be viewed either as money market instruments or as alternatives to 
conventional bonds. Similarly, they can be analyzed using two approaches, 
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corresponding to these two views. The fi rst approach is the margin method, 
which calculates the difference between an FRN’s return and that of an 
equivalent money market security. The second is the yield-to-maturity 
spread approach, which compares the notes with fi xed-rate bonds.

The margin method has two forms: simple margin and discounted 
margin. The simple margin method compares an FRN’s average return 
throughout its life with the reference interest rate (i.e., LIBOR). This 
method is sometimes preferred because it does not require the forecasting 
of future interest index rates and coupon values. It has two components: 
a quoted margin, which is either above or below the reference rate, and a 
capital gain or loss, calculated assuming that the difference between the 
current price of the FRN and its maturity value is spread evenly over the 
remaining life of the bond. The formula for computing simple margin is 
(13.1).

 Simple margin=
  

M P
T

Md
q

−( )
×( )

+
100

  (13.1)

where
Pd = the dirty price, or P plus the accrued interest AI 
M = the par value 
T = the number of years from settlement to maturity
Mq = the quoted margin

A positive simple margin signifi es that the FRN’s yield is higher than 
that of a comparable money market security.

The simple margin formula may be adjusted to take into account 
changes in the reference index rate since the last reset date. This is done by 
replacing the price in (13.1) with an adjusted price, defi ned using either 
(13.2a) or (13.2b) which assume semiannual coupons. 
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where

APd = the adjusted dirty price 
re = the current value of the reference interest rate (such as LIBOR)
C/2 = the next coupon payment (that is, C is the reference interest rate 

on the last coupon reset date plus Mq  )
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Nsc = the number of days between settlement and the next coupon 
date

Equation (13.2a) differs from (13.2b) in ignoring the current yield 
effect: all payments are assumed to be received on the basis of par, thus 
understating the coupon’s value for FRNs trading below par and over-
stating it for those trading above par. 

The simple margin method amortizes the discount or premium 
relative to the money market on the FRN in a straight line over its 
remaining life. The discounted margin method amortizes at a constantly 
compounded rate. The discounted margin method has the disadvantage 
of requiring that the reference index rate be forecast over the remaining 
life of the bond.

The discounted margin for an FRN paying semiannual coupons can 
be solved for from equation (13.3). (Equation (13.3) may also be stated in 
terms of discount factors instead of the reference rate.) 
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where
DM = the discounted margin
re = the current value of the reference index rate
re* = the assumed (or forecast) value of the reference rate over the 

remaining life the bond
Mq = the quoted margin 
N = the number of coupon payments before redemption

The spread in the second, yield-to-maturity approach is defi ned as 
rmf – rmb, where rmf is the yield of the subject note and rmb is the yield 
of a reference bond. An FRN’s rmf is calculated using equation (13.3) 
with both (re + DM ) and (re* + DM ) replaced by rmf. The reference bond 
yield is calculated using (13.4). If the yield-to-maturity spread is positive, 
the FRN offers a higher yield than the reference bond.
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The discussion so far has involved plain vanilla FRNs. Other types of 
fl oaters that have traded include the following:

❑ Collared FRNs, which have both caps and fl oors. Effectively, these 
notes contain two embedded options—the issuer buys a cap from and sells 
a fl oor to the investor. 

❑ Step-up recovery FRNs, whose coupons are fi xed against com-
parable longer-maturity bonds, i.e., bonds with longer maturities than 
those of the FRNs in question. These notes enable investors to maintain 
exposure to short-term assets while capitalizing on a yield curved with 
positive slope. 

❑ Corridor FRNs, which accrue daily interest only when the refer-
ence index falls within a specifi ed range. Introduced to capitalize on 
expectations of comparative interest rate inactivity, these are high-risk, 
high-reward instruments. They offer investors very substantial margins 
over a chosen reference rate. But if the reference rate does not remain 
within a relatively narrow corridor, the interest payment is forfeited 
entirely. 

Inverse Floating-Rate Notes
An inverse fl oating-rate note, or inverse fl oater, pays a coupon that increases 
as general market rates decline. It offers enhanced returns to investors who, 
in contrast to the market consensus, believe the outlook for bonds is gener-
ally positive. These notes are suitable when infl ation is low and the yield 
curve positive, both conditions that would, in a conventional analysis, 
suggest rising interest rates in the medium term. Inverse fl oaters may also 
be appropriate when the yield curve is negative, i.e., inverted, should the 
investor agree with the market consensus, which would be for lower rates 
in the medium term. 

The coupon on an inverse fl oater may be determined in a number of 
ways. The most common is to subtract from a specifi ed fi xed interest rate 
a variable that is linked to a reference index. Coupons have a fl oor, which, 
if unspecifi ed, is 0 percent. 

Issuers of inverse fl oaters are usually corporations. The notes may also, 
however, be issued to meet specifi c client requirements, by specialized 
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investment vehicles—funds, such as wholly owned Citigroup subsidiaries 
Centauri and Dorada Corp, that are set up to invest in particular areas or 
sectors. FIGURE 13.1 illustrates the coupon calculation on a typical inverse 
fl oater and how changes in the LIBOR rate affect the payment. 

FIGURE 13.1  Terms of a Hypothetical Inverse Floater

Nominal value $100,000,000
Issue date 5-Jan-2000
Maturity date 5-Jan-2003
 
Note coupon 15.75% – (2 x LIBOR)
Day-count basis actual/365
Index 6-month LIBOR
Current LIBOR rate 5.15%
Rate fi xing Semiannual
Initial coupon 5.45%
Minimum coupon 0%

   USD LIBOR COUPON PAYABLE

1.00% 13.75%

1.50% 12.75%

2.00% 11.75%

2.50% 10.75%

3.00% 9.75%

3.50% 8.75%

4.00% 7.75%

4.50% 6.75%

5.00% 5.75%

5.50% 4.75%

6.00% 3.75%

6.50% 2.75%

7.00% 1.75%



                                         Hybrid Securities 233

The inverse fl oater in fi gure 13.1 pays a slightly above-market initial 
coupon given a positive yield curve. Investors benefi t because they get a 
coupon whose sensitivity is equal to two times the changes in LIBOR. 

FRNs in general are highly interest rate sensitive. This is because the 
leverage involved in the coupon calculation endows them with the high-
est duration of any instrument traded in the fi xed-income market. The 
note in fi gure 13.1, for example, has a calendar maturity of three years. As 
shown in FIGURE 13.2, however, its modifi ed duration is much higher. 

Inverse fl oaters are very fl exible instruments. They can, for instance, be 
linked to any reference index and thus serve as vehicles for different views 
concerning various short- or long-term interest rates, such as the central 
bank repo rate, 10-year swap rates, or a government benchmark. The 
notes’ leverage can also be altered according to investors’ risk preferences. 
The fi xed element can be chosen for the same reason. Equally, the fi xed 
element can be set to move upward or downward as required at next term. 
Inverse fl oaters can also give investors exposure to markets they wouldn’t 
otherwise have access to. Someone who has a particular view on a specifi c 
foreign interest rate, for example, but who can’t invest in that market’s 
securities for some reason can buy an inverse FRN that is linked to the 
foreign index but pays coupon in the domestic currency.

Hedging Inverse Floaters
Borrowers often issue inverse fl oating notes in one currency and swap 
the proceeds into another that fi ts their funding needs better using a cur-
rency swap. They may then hedge their interest rate exposure on the note 
through an interest rate swap. The counterparty swap bank, in turn, will 
hedge its own exposure. The interest rate swap structure used to hedge the 
note in fi gure 13.1 is shown in FIGURE 13.3.

In fi gure 13.3, the note issuer enters into a swap in which it
❑ pays 6-month LIBOR 
❑ receives the note coupon rate

FIGURE 13.2  Duration of a Year Inverse Floater

Duration of 3-year note with 5.30% coupon 2.218 years

Duration of 3-year inverse fl oater (x 3) 6.654 years
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The swap bank, which takes the other side of the transaction, receiving 
LIBOR and paying the coupon rate, must now hedge its own exposure 
with another swap. To understand the structure of this second swap, it 
helps to consider the note coupon of 15.75 percent minus two times 
LIBOR as composed of the following two transactions: 

❑ the note holder receives 15.75 percent
❑ the note holder pays two times LIBOR

In its arrangement with the note issuer, the bank is thus receiving three 
times LIBOR and paying 15.75 percent. The hedging swap it enters into 
consists of a payment of three times LIBOR in return for three times the fi xed 
swap rate of 5.30, or 15.90 percent. This total is higher than the fi xed compo-
nent of the coupon by 15 basis points. This difference is the cost of fi xing 
a cap, to hedge against the exposure presented by the fl oor on the note. 

Figure 13.1 specifi es that the inverse fl oater has a minimum coupon 
on 0 percent. The fl oor is passed on from the note issuer to the swap bank 
via the swap. This, in effect, caps the note holders’ LIBOR exposure at 
7.875 percent (15.75 divided by two). The bank’s swap leaves it exposed 
to a rise in LIBOR above this level. To be fully hedged, the bank must buy 
an interest rate cap on LIBOR with a strike rate of 7.875 percent. The cap 
costs 15 basis points, which explains the spread over the coupon rate in 
the swap structure.

Indexed Amortizing Notes
Another type of hybrid security is the indexed amortizing note, or IAN. 
IANs were introduced in the U.S. market in the early 1990s in response to 
demand by investors in asset-backed notes known as collateralized mort-

FIGURE 13.3  Structure of Swaps Hedging an Inverse Floater

15.75%
– (2 x LIBOR)

LIBOR 3 x LIBOR

3 x 5.30% 
(inc cap cost)

15.75% 
– (2 x LIBOR)

Note
Issuer 

Note
Holder

Swap
Bank

The
Market
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gage obligations, or CMOs. IANs have been issued by banks, corpora-
tions, and, in large volumes, by U.S. government agencies. 

IANs are short- to medium-term unsecured notes, most commonly 
with fi ve-year maturities. They have fi xed-coupons and variable nomi-
nal values—that is, after a “lock-out period,” during which it remains 
stable, their principal is paid down according to a schedule determined 
by the level of a reference index, such as 6-month LIBOR, relative to a 
specifi ed base rate. In this respect, IANs are similar to mortgage-backed 
notes, which also amortize. Mortgage-backed notes’ amortization, 
however, is determined by the principal payments and prepayments 
of their underlying pools of mortgages. Because mortgage payments 
follow less clearly defi ned patterns than the reference indexes, IANs are 
considered to have an advantage over mortgage-backed securities. They 
also typically pay yields that are higher than those of conventional debt 
securities of similar credit quality. FIGURE 13.4 shows the terms of a 
hypothetical IAN.

FIGURE 13.4  Terms of a Hypothetical IAN

Issuer Mortgage agency
Nominal value $250,000,000 
Legal maturity Six years
Coupon 2-year Treasury plus 100 bps
Interest basis Monthly
“Lock-out period” Three years
Reference index 6-month LIBOR
6m LIBOR fi xing on issue 5.15%
Minimum level of note 20%

  AVERAGE LIFE SENSITIVITY  
  LIBOR RATE AMORTIZATION RATE AVERAGE LIFE (YEARS)

5.15% 100% 3

6.00% 100% 3

7.00% 21% 4.1

8.00% 7% 5.6

9.00% 0.00% 6
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The note in fi gure 13.3 pays a coupon equal to the current 2-year 
government benchmark plus a fi xed spread of 1 percent. It has a legal 
maturity of six years, but it will mature in three years if, two years from 
the issue date, 6-month LIBOR stands at 6 percent or below. Amortiza-
tion takes place on subsequent rate-fi xing dates according to the specifi ed 
schedule. If at any time less than 20 percent of the nominal value remains, 
the note is canceled.

IAN issuers typically hedge their exposure through swap arrange-
ments that mirror the notes’ structure. A simple hedge is shown in 
FIGURE 13.5. It is more common, however, for the arrangement to involve 
a series of options on swaps, or swaptions. When volatility in the fi xed-
income market is high and the yield curve steeply positive, swaptions 
tend to have greater value, so the IAN coupon in those circumstances 
might be especially attractive.

Advantages for Investors
It has already been noted that IANs offer relatively high yields for rela-
tively short maturities and that their amortization structures are easier 
to understand than those of mortgage-backed securities. In addition to 
these advantages, the notes, like the other instruments described here, 
can be tailored to meet individual investor requirements. The features 
most frequently subjected to this tailoring are the legal maturity and 
the lockout period, with the yield premium decreasing as the latter 
approaches the former. Although the most common reference index is 
LIBOR, it can also be a government benchmark or an interbank rate 
such as the swap rate. 

FIGURE 13.5  IAN Hedge Arrangement

Fixed
coupon

LIBOR + spread
(funding cost)

Fixed
coupon

Note
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Synthetic Convertible Notes
Synthetic convertible notes are securities with fi xed coupons, typically set 
at a relatively low level, whose total return is linked to an external source, 
such as the level of an equity index or the price of a specifi c security. In one 
common structure, the note is redeemable above par if the reference index 
or security value exceeds a stated minimum. The notes thus give investors 
the opportunity to profi t from the benchmark’s performance while provid-
ing the safety net of redemption at par should this performance fall short. 
Another typical synthetic convertible structure is the zero-coupon note. 
These notes are issued at par and redeemable at par, or higher, if a specifi ed 
equity index performs better than a stated level.

FIGURE 13.6 shows the terms of a hypothetical sterling synthetic con-
vertible note linked to the FTSE 100 equity index. This note will pay 
par on maturity unless the FTSE 100 has risen by more than 10 percent 
from its level on the issue date. In that case, the redemption value will be 
par plus the amount of the index rise. The note also pays a coupon of 0.5 

FIGURE 13.6  Terms of a Hypothetical Synthetic Convertible Note

Nominal value $50,000,000
Term to maturity Two years
Issue date 17-Jun-99
Maturity date 17-Jun-01
Issue price $100
Coupon 0.50%
Interest basis Semiannual
Redemption proceeds Min [100, Formula level]
Formula level  100 + [100 x (R(I) – (1.1 x R(II)) / R(II)]
Index FTSE-100

R(I) Index level on maturity
R(II) Index level on issue

Hedge terms
Issuer pays LIBOR
Swap bank pays  Redemption proceeds in accordance with 

   formula
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percent, which is roughly fi ve percentage points less than the 2-year sterling 
yield at the time. The synthetic convertible described is thus suitable only 
for investors who are very bullish on the prospects of the FTSE 100. 

Investor Benefits
Like convertible bonds, synthetic convertible notes provide investors with 
fi xed coupons plus the possibility of profi ting from the performance of the 
reference index. Unlike the ordinary convertible, however, the synthetic 
pays in cash rather than in shares of the associated equity.

The reference for a synthetic convertible can be virtually any publicly 
quoted fi nancial instrument or relationship. Payouts have been linked, for 
instance, to the exchange rate of two currencies, the days on which LIBOR 
falls within a specifi ed range, and the performance of a selected basket of 
stocks, such as technology shares.

Interest Differential Notes
Interest differential notes, or IDNs, are hybrid securities that enable inves-
tors to take a position based on their views about interest rates in two 
different currencies. Notes in the U.S. market are usually denominated in 
U.S. dollars; Euromarket notes have been issued in a wide range of cur-
rencies. 

IDNs have a number of variations. Some pay a variable coupon and 
a fi xed redemption amount; others pay a fi xed coupon and a redemption 
amount that is determined by the level or performance of a reference in-
dex. Still other IDNs have payoff profi les linked to the difference between 
interest rates in two specifi ed currencies or between rates for two different 
maturities in one currency. 

FIGURE 13.7 shows the terms and potential returns of a 5-year IDN. 
The terms specify that the note’s coupon will increase as the difference be-
tween U.S. dollar LIBOR and euro LIBOR widens, and vice versa. Below 
the list of terms are various returns that are possible in different interest 
rate scenarios. These are stated as spreads over the 5-year government 
benchmark yield. For instance, at the initial LIBOR differential of 2.65, 
it is stated that the IDN will return 95 basis points over the benchmark. 
The returns given are not guaranteed, of course, since they are based on 
the unrealistic assumption the interest differential will remain at the level 
indicated through to the fi nal coupon-setting date. The listed returns do, 
however, demonstrate that the note’s spread over the benchmark widens as 
the difference between the two rates increases. And the note will continue 
to offer a premium over the government yield even if the rate difference 
declines, as long as this decline doesn’t exceed 100 basis points each year.
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For purposes of analysis, this IDN can be regarded as a fi xed-coupon 
bond plus the double indexation of an interest rate differential. Indexation 
here refers to a reference rate based on an index. The double indexation 
creates two long positions in a 5-year dollar-denominated fi xed-rate note 
and two short positions in a euro-denominated fi xed-rate note. The short 
positions remove the euro exchange-rate risk, so investors are exposed only 
to the euro interest rate risk, which is the desired exposure. 

As with other hybrid securities, issuers of IDNs hedge their exposure 
with swaps. For the note in fi gure 13.7, the hedge would involve both dol-
lar and euro interest rate swaps. 

FIGURE 13.7  Terms of a Hypothetical Interest Differential Note

Term to maturity Five years
Coupon  [(2 x USD LIBOR) – (2 x EUR LIBOR) 
 – 0.50%]

Current USD LIBOR 6.15%
Current EUR LIBOR 3.05%
Rate differential 3.10%
First coupon fi x 5.70%
Current 5-year 
   benchmark rate 4.75%
Yield spread over 
   benchmark 0.95%

   CHANGE IN LIBOR LIBOR SPREAD SPREAD OVER
   SPREAD (BPS P.A.) AT RATE RESET BENCHMARK

75 4.78% 2.34%

50 3.90% 1.88%

25 3.15% 1.21%

0 2.65% 0.95%

–25 1.97% 0.56%

–50 1.32% 0.34%

–75 0.89% 0.12%

–100 0.32% –0.28%
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Benefits for Investors
IDNs and similar instruments enable investors to put on positions that 
refl ect their views on the direction or level of foreign interest rates without 
taking on currency, or exchange-rate, risk. The IDN in fi gure 13.7, for 
example, would appeal to investors with a particular view on the U.S.-
dollar and euro yield curves. Say the dollar curve is inverted, and the euro 
curve positively sloping. Investors buying this IDN would be earning a 
high yield while expressing a view—for example, is the market going up 
or down—that is different from the market consensus.

IDNs can be structured to enable investors to take positions on the 
yields in different currencies at the same maturity. A note’s coupon, for 
example, could be determined by the difference between the 10-year 
government benchmark yields in two specifi ed countries. The notes can 
also be linked to spreads between yields at different maturities in the same 
currency. This would be a straight yield-curve, or relative-value, trade in a 
domestic or foreign currency. 

IDNs do expose investors to interest rate risk. If the rate differential 
moves in the opposite direction from the one desired, the coupon is 
reduced and the yield may fall below that available on the benchmark 
bond.
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Securitization and 
Mortgage-Backed Securities

C H A P T E R  1 4

Perhaps the best illustration of the fl exibility, innovation, and user-
friendliness of the debt capital markets is the rise in use and impor-
tance of securitization. As defi ned in Sundaresan (1997, page 359), 

securitization is “a framework in which some illiquid assets of a corpora-
tion or a fi nancial institution are transformed into a package of securities 
backed by these assets, through careful packaging, credit enhancements, 
liquidity enhancements and structuring.”

The fl exibility of securitization is a key advantage for both issuers and 
investors. Financial-engineering techniques employed by investment banks 
today enable bonds to be created from any type of cash fl ow. The most typical 
such fl ows are those generated by high-volume loans such as residential mort-
gages and car and credit card loans, which are recorded as assets on bank or 
fi nancial-house balance sheets. In a securitization, the loan assets are packaged 
together, and their interest payments are used to service the new bond issue.

In addition to the more traditional cash fl ows from mortgages and loan 
assets, investment banks underwrite bonds secured with fl ows received by 
leisure and recreational facilities, such as health clubs, and other entities, 
such as nursing homes. Bonds securitizing mortgages are usually treated as 
a separate class, termed mortgage-backed securities, or MBSs. Those with 
other underlying assets are known as asset-backed securities, or ABSs. The 
type of asset class backing a securitized bond issue determines the method 
used to analyze and value it. 

The asset-backed market represents a large and diverse group of securi-
ties suited to a varied group of investors. Often these instruments are the 
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only way for institutional investors to pick up yield while retaining assets 
with high credit ratings. They are popular with issuers because they rep-
resent a cost-effective means of removing assets from their balance sheets, 
thus freeing up lines of credit and enabling them to access lower-cost 
funding. Although asset-backed securities were developed in the United 
States, liquid markets for them also exist in the United Kingdom, Europe, 
Asia, and Latin America.

Instruments are available backed by a variety of assets, covering the 
entire yield curve, with either fi xed or fl oating coupons. In the United 
Kingdom, for example, it is common for mortgage-backed bonds to have 
fl oating coupons, mirroring the interest basis of the country’s mortgages. 
To suit investor requirements, however, some of these structures have been 
modifi ed, through swap arrangements, to pay fi xed coupons.

As noted, securitization is used in a large number of markets involving 
many different currencies. Readers interested in particular areas should 
consult the References section for specialized texts. 

Reasons for Undertaking Securitization
The driving force behind the growth in securitization has been the need 
for banks to reduce the size of their balance sheets. Reducing assets in this 
manner has the following benefi ts:

❑  The return on equity increases, since the revenues from the assets 
remain roughly unchanged even as the size of the assets decreases.

❑  The level of capital required to support the balance sheet is reduced, 
leading to cost savings or permitting the institution to allocate the 
capital to other, perhaps more profi table, businesses.

❑  The interest payable on ABSs is frequently considerably below that 
earned on the underlying loans, creating a cash surplus.

Securitization also enables an institution to access debt markets its credit 
rating would otherwise be too low for. The growth in the United States of the 
“credit card banks,” such as MBNA International, would have been severely 
restricted if these fi rms had not had a market for their securitized debt.

Market Participants
Securitization involves several participants. The originator owns the securi-
tized assets. These are typically acquired by an issuer, which is usually a spe-
cial purpose vehicle, or SPV, set up specifi cally for this purpose and domiciled 
offshore. Establishing an SPV ensures that the underlying asset pool is sepa-
rate from the originator’s other assets so that a bankruptcy or insolvency suf-
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fered by the originator will have minimal impact on the securitized assets. 
In addition to the originator and issuer, there are two trustees. The 

issuer trustee has the following responsibilities:
❑  representing the interests of the bondholders
❑  monitoring the transaction and the issuer for violations of the deal 

covenants
❑  enforcing the rights of the bondholders in the event of bankruptcy

The security trustee is responsible for the following:
❑  holding the security interest in the underlying asset pool
❑  communicating with the pool’s manager
❑  acting under the direction of the note trustee, who is responsible 

for representing the noteholder interests—often the same fi rm acts 
as security and note trustee—in the event of default

Because the assets are held within an SPV framework, defi ned in for-
mal legal terms, the originator’s fi nancial status and credit rating are almost 
irrelevant to the bondholders. There may also be a third-party guarantee 
of credit quality, which enables the securitized notes to be offered with an 
investment-grade credit rating up to AAA. FIGURE 14.1 shows a simplifi ed 
process of securitization. 

FIGURE 14.1  Securitization Process

AAA Notes

AA Notes

A Notes

Credit
enhancementSPV

Asset Pool

Originators Originators Originators

Note
issue

Class "A" Notes

Class "B" Notes
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Securitizing Mortgages
A mortgage is a long-term loan taken out to purchase residential or com-
mercial property, which itself serves as security for the loan. The term of 
the loan is usually twenty-fi ve to thirty years, but a shorter period is pos-
sible if the borrower, or mortgagor, wishes one. In exchange for the right to 
use the property during the term of the mortgage, the borrower provides 
the lender, or mortgagee, with a lien, or claim, against the property and 
agrees to make regular payments of both principal and interest. If the bor-
rower defaults on the interest payments, the lender has the right to take 
over and sell the property, recovering the loan from the proceeds of the 
sale. The lien is removed when the debt is paid off. 

A lending institution may have many hundreds of thousands of indi-
vidual residential and commercial mortgages on its books. When these are 
pooled together and used as collateral for a bond issue, the result is a mort-
gage-backed security. In the U.S. market, certain mortgage-backed securities 
are backed, either implicitly or explicitly, by the government. A government 
agency, the Government National Mortgage Association (GNMA, known 
as “Ginnie Mae”), and two government-sponsored agencies, the Federal 
Home Loan Corporation and the Federal National Mortgage Association 
(“Freddie Mac” and “Fannie Mae,” respectively), purchase mortgages to 
pool and hold in their portfolios and, possibly, securitize. The MBSs created 
by these agencies trade essentially as risk-free instruments and are not rated 
by the credit agencies.

Mortgage-backed bonds not issued by government agencies are rated 
in the same way as other corporates. Some nongovernment agencies ob-
tain mortgage insurance for their issues, to boost their credit quality. The 
credit rating of the insurer then becomes an important factor in the bond’s 
credit rating.

Growth of the Market
Hayre, Mohebbi, and Zimmermann (1998) list the following advantages 
of mortgage-backed bonds:

❑ Their yields are usually higher than those of corporate bonds with 
the same credit rating. In the mid-1990s, mortgage-backed bonds traded 
around 100 to 200 basis points above Treasury bonds; by comparison, cor-
porates traded at a spread of around 80 to 150 for bonds of similar credit 
quality. This yield gap stems from the mortgage bonds’ complexity and the 
uncertainty of mortgage cash fl ows.

❑ They offer investors a wide range of maturities, cash fl ows, and 
security collateral to choose from.
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❑ Agency mortgage-backed bonds are implicitly backed by the 
government and therefore represent a better credit risk than triple-A-
rated corporate bonds; nonagency bonds are often triple-A or double-A 
rated.

❑ The market is large and thus very liquid; agency mortgage-backed 
bonds have the same liquidity as Treasury bonds.

❑ Unlike most other bonds, mortgage-backed securities pay monthly 
coupons, an advantage for investors who require frequent income pay-
ments.

Types of Mortgages and Their Cash Flows
Mortgages can have either fi xed or fl oating rates of interest. Borrowers in 
the United States generally take out fi xed-rate repayment mortgages, which 
amortize the principal. There are also interest-only mortgages, where the 
borrower’s regular payments consist only of interest; the principal is paid 
off on maturity using the proceeds of an investment contract taken out 
at the same time, and for the same term, as the mortgage. In the United 
Kingdom, these are known as endowment mortgages and are popular with 
homebuyers, although their popularity has waned in recent years.

Level-payment fi xed-rate mortgages, the conventional form in the 
United States, have fi xed terms to maturity and specify monthly pay-
ments of fi xed-rate interest. The monthly interest payment on a conven-
tional fi xed-rate mortgage is given by formula (14.3), which is derived 
from the conventional present-value equation via the steps shown in 
(14.1) and (14.2).
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 (14.1)

where
Mm0 = the original mortgage balance (the loan cash amount)
I = the monthly cash mortgage payment
r = the simple monthly interest rate, equal to the annual interest rate 

divided by 12
n = the term of the mortgage in months

Equation (14.1) is rearranged as (14.2), which may then be simplifi ed 
as (14.3).
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The monthly payment includes both the interest servicing and a 
repayment of part of the principal. In equation (14.3), after the 264th 
interest payment, the balance will be zero and the mortgage will have 
been paid off. As the principal is paid off, the base on which the interest 
is calculated diminishes and the monthly interest payment is reduced. 
So, assuming a constant monthly payment amount, the proportion of 
it dedicated to repaying the principal steadily increases. The remaining 
mortgage balance for any month during the term of the mortgage may 
be calculated using (14.4).
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where 
Mmt = the mortgage cash balance after t months 

The principal repayment and the interest payment in any month 
during the mortgage term can be calculated using equations (14.5) and 
(14.6), respectively. 
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where 
Pt = the scheduled principal repayment amount for month t

 i M
r r r

rt m

n t

n=
+( ) − +( )⎡

⎣
⎤
⎦

+( ) −⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

0

11 1

1 1
 (14.6)

where 
it  = the interest payment in month t
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Mortgages may be serviced by the original lender or by a third-party 
institution that has agreed to service it in return for the fee. Some mortgage 
contracts specify a servicing fee to cover the administrative costs associated 
with collecting interest payments, sending regular statements and other 
information to borrowers, chasing overdue payments, maintaining the 
records and processing systems, and other activities. When applicable, the 
servicing charge incorporated into the monthly payment is usually stated in 
the form of a percentage, say 0.25 percent, added to the mortgage rate. 

The U.S. market also includes adjustable-rate mortgages, or ARMs, 
which reset interest payments at specifi ed intervals to a specifi ed short-
term interest rate index. The interval between resets can be a month, six 
months, a year, or longer. The interest rate is usually set at a spread over 
the reference rate, which can be market-determined—the prime rate, for 
instance—or calculated based on the funding costs for U.S. savings and 
loan institutions, or thrifts, as indicated by one of the thrift indexes. The 
two most commonly consulted thrift indexes are the Eleventh Federal 
Home Loan Bank Board District Cost of Funds Index, or COFI, and the 
National Cost of Funds Index. 

According to Sundaresan (1997, page 366), ARMs account for more 
than half the U.S. domestic mortgage business. Most borrowers prefer 
to reduce uncertainty by fi xing their mortgage rates. To entice borrowers 
away from fi xed-rate mortgages, ARM lenders often offer below-market 
interest rates for an introductory period, usually of two to fi ve years 
although it can be longer. ARMs typically also have interest-rate caps, 
which limit the maximum rate borrowers will have to pay should market 
rates rise dramatically.

Balloon mortgages, like many ARMs, offer a fairly low fi xed rate for the 
fi rst fi ve to seven years of their terms, after which the rate is reset; unlike 
with ARMs, however, this reset occurs only once. Balloon mortgages am-
ortize their principal over a long term, usually thirty years, but require that 
a large “balloon” payment, equal to the original loan minus amortization, 
be made before maturity. This effectively transforms a long-dated loan 
into short-term borrowing. Balloon loans are best suited to borrowers who 
expect to sell their property soon; bonds securitized with them therefore 
have actual maturities that are shorter than the stated ones.

Graduated payment mortgages, or GPMs, are aimed at low-income buy-
ers who expect their earnings to grow. They have fi xed interest rates and 
terms, but their monthly payments rise according to a specifi ed schedule. 
The payments start below those for level-paying mortgages with identical 
interest rates and terms. Each year, the payment amounts increase by a 
set percentage over the previous year’s until they reach a specifi ed level, at 
which they then remain fi xed. 
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Because a GPM’s initial payments are below the market level for the 
specifi ed fi xed rate, they include little or no repayment of principal. In 
fact, they may not even cover the amount of interest due. In that case, the 
interest owed is added to the principal of the loan. The outstanding bal-
ance may thus increase during the early years of the mortgage, a process 
known as negative amortization. The higher payments in the remainder of 
the mortgage term are designed to pay off the entire balance by maturity. 

Growing equity mortgages, or GEMs, also have fi xed rates and pay-
ments that increase over time, but these payments don’t start at below-
market levels, so there is no negative amortization. In fact, the increasing 
payments result in faster amortization than with a level-pay mortgage and 
thus a shorter term to maturity. 

Mortgage Bond Risk
Although mortgages are typically long-term contracts, running for twenty 
to thirty years or even longer, their actual terms may be considerably 
shorter. This is because borrowers can elect to repay principal at a faster 
rate than is specifi ed in the contract. There are number of reasons for 
such prepayments. The most common is the sale of the property securing 
the mortgage. Other possible causes of prepayment include default by the 
borrower, resulting in repossession of the securing property; a change in 
interest rates that makes refi nancing the mortgage (usually with another 
lender) attractive; and destruction of the property through accident or 
natural disaster.

Some lending institutions penalize borrowers who retire their loans 
early. In the United States, prepayment penalties are levied only for com-
mercial mortgages, not for residential ones (both are penalized in the 
United Kingdom). Residential lenders, therefore, cannot be certain of 
the cash fl ows they will receive. This is known as prepayment risk. The 
uncertainty of mortgages’ cash fl ows, and the risk associated with it, is 
passed on to the securities backed by the loans. In this way, an MBS is 
similar to a callable bond, with the “call” exercisable at the discretion of 
the borrowers, and, as will be explained later, it can be valued using a 
similar pricing model. 

An investor acquiring a pool of mortgages from a lender measures 
the amount of associated prepayment risk by using a fi nancial model to 
project the level of expected future payments. Although it is impossible 
to evaluate with any accuracy the prepayment potential of an individual 
mortgage, such analysis is reasonable for a large pool of loans. This is simi-
lar to what actuaries do when they assess the future liability of an insurer 
that has written personal pension contracts. The level of prepayment risk 
for a pool of loans is lower than that for an individual mortgage. 
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The other signifi cant risk of a mortgage book is that a borrower will 
fall into arrears or be unable to repay the loan at maturity. This is known 
as default risk. Lenders take steps to minimize default risk by assessing the 
credit quality of each borrower, as well as the quality of the property itself. 
The study described in Brown, S., et al. (1990) found that the higher the 
deposit paid by the borrower, the lower the incidence of default. Lenders 
prefer that borrowers’ equity in the securing property be high enough to 
protect against a fall in the property’s value. The typical deposit required 
is between 10 and 25 percent, although certain lenders will advance funds 
against smaller deposits, such 5 percent. 

Types of Mortgage-Backed Securities
Mortgage-backed securities—also known as mortgage pass-through secu-
rities, because the income from the underlying pool of loans is “passed 
through” to the bondholders—may be formed from residential or com-
mercial loans or from a mixture of both. Bonds backed by commercial 
mortgages are known as commercial mortgage-backed securities, CMBSs. 
Those created from mortgage pools that have been purchased by govern-
ment agencies are known as agency mortgage-backed securities, or AMBSs, 
and are regarded as risk-free in the same way that Treasuries are. Collateral-
ized mortgage securities and stripped mortgage-backed securities are related 
to pass-throughs but differ in important respects. The following discus-
sion concerns plain vanilla mortgage-backed bonds. More complicated 
instruments also trade in the market. 

A collateralized mortgage obligation, or CMO, differs from a pass-
through in that the underlying mortgage pool is separated into different 
maturity classes, or tranches, and the cash fl ow distributions to investors 
are prioritized based on the class of the tranche they hold. It is possible to 
have two tranches of the same rating, but one more senior than the other. 
Typically, each tranche also pays a different interest rate and appeals to a 
different class of investors. 

All classes of a single CMO receive an equal share of the interest pay-
ments; it is the principal repayments received that differ. Consider an issue 
with a nominal value of $100 million, $60 million of which is allocated 
to the class A tranche, $25 million to the class B, and the rest to class C. 
Holders of class A bonds receive all the principal repayments until the 
bonds retire, after which class B holders get all the repayments, and so on. 
The class A bonds thus have the shortest maturity and the highest credit 
rating, and the class C bonds the longest and usually the lowest. A level 
of uncertainty is still associated with the maturity of each bond, but it is 
lower than that associated with a pass-through security. CMOs are dis-
cussed in more depth below. 
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As its name suggests, the stripped mortgage-backed security, or 
stripped bond, is created by separating the underlying loan pool’s interest 
and principal payments and assigning each cash fl ow to a different class of 
bonds—respectively, the interest-only, or IO, class, and the principal only, 
or PO, class. Stripped mortgage-backed bonds are potentially less advan-
tageous to the issuer than a pass-through or a CMO. They are, however, 
liquid instruments and are often traded to hedge a conventional mortgage 
bond book. IOs and POs are discussed more fully below.

Cash Flow Patterns
As already noted, the exact term of a mortgage-backed bond cannot be 
stated with assurance at the time of issue, because of the uncertainty 
connected with the speed of mortgage prepayments. As a result, it is 
not possible to analyze these bonds using the same methods as for fi xed-
coupon bonds. The most common approach is to assume a fi xed prepay-
ment rate—recognizing that, in reality, it will fl uctuate with changes in 
mortgage rates and the economic cycle—and use this to project the bond’s 
cash fl ows and thus its life span. The prepayment rate selected obviously 
is very important. This section considers some of the ways the rate is 
arrived at.

Prepayment Analysis
Some market analysts base their estimates of the terms of mortgage pass-
through bonds on the average life of a mortgage. Market data have sug-
gested that the average mortgage is paid off after its twelfth year, leading 
to the traditional assumption of a “12-year prepaid life.” This approach, 
however, does not take into account the effect of mortgage rates and other 
factors and so is not generally favored. A more common method is to use 
a constant prepayment rate, or CPR, an annualized fi gure based on the 
number of mortgages in a pool expected to be prepaid in a selected period. 
The constant monthly repayment fi gure, also known as the single monthly 
mortality rate, or SMM, is the percentage of the outstanding balance, 
minus the scheduled principal payment, expected to be repaid each 
month. The equation for calculating SMM is (14.7). 

 SMM CPR= − −( )1 1 1 12/  (14.7)

The convention is to estimate CPR using the prepayment standard 
developed by the Public Securities Association, or PSA, the domestic bond 
market trade association now named the Bond Market Association. The 
PSA benchmark—100 percent PSA—assumes a starting prepayment rate 
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of 0.2 percent. This increases by 0.2 points each month until the thirtieth 
month, when it levels off at a constant rate of 6 percent. Stated formally, 
if t is the number of months from the start of the mortgage, then
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This benchmark can be altered to suit changing market conditions, 
e.g., when interest rates are dropping and prepayments are accordingly 
expected to be faster. For example, the benchmark might be 200 percent 
PSA, which doubles the starting prepayment rate, to 0.4 percent; the 
monthly increase, to 0.4 percentage points; and the constant level it reaches 
in the thirtieth month, to 12 percent. The 50 percent PSA benchmark—
for when rates are rising and prepayments are expected to slow—starts at 
0.1 percent and increases by 0.1 percent, leveling off at 3 percent. 

A mortgage pool’s prepayment rate affects its cash fl ows. If the rate 
is zero, meaning no prepayments, the cash fl ows are constant during 
the mortgages’ lifetimes. In a fi xed-rate mortgage, the ratio of princi-
pal to interest payment changes each month as more and more of the 
loan amortizes. For a pass-through security issued today, and whose 
coupon, therefore, refl ects the current market rate, the payment pat-
tern at a zero percent prepayment rate will resemble the bar chart in 
FIGURE 14.2.

When the CPR is greater than zero, as in the 100 percent PSA and 
200 percent PSA models, the principal payments will increase during 
the early years of the mortgages, then level off before declining for the 

EXAMPLE: Constant Prepayment Rate

Assume that the constant monthly prepayment rate for a pool of 
mortgages is 2 percent, the outstanding principal balance at the 
start of the month is $72,200, and the scheduled principal pay-
ment is $223. To estimate the amount of principal prepayment 
for that month, the scheduled payment is subtracted from the 
balance, giving a total of $71,977, which is multiplied by the 
constant monthly prepayment rate, giving a prepayment amount 
for that month of $1,439. 
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remainder of the term, as the outstanding balances become so small 
that the scheduled principal payments are insignifi cant. FIGURE 14.3 
shows the payment pattern for a single 9 percent, 30-year loan at 100 
percent PSA. 

FIGURE 14.2  Ratio of Interest to Principal Payments for a 
Mortgage Pass-Through Security with 0 Percent CPR
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FIGURE 14.3  Payment Ratio in a 100 Percent PSA Model
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The prepayment volatility of a mortgage-backed bond depends on the 
interest rates of the underlying mortgages. Volatility has been observed to 
be highest when the mortgages’ rates are between 100 and 300 basis points 
above current rates: at the bottom of this range, any fall in interest rates 
tends to produce a sudden increase in refi nancings and thus prepayments, 
while at the top of the range, a rise in rates leads to a decrease in refi nanc-
ings and prepayments.

The actual cash fl ows of a mortgage pass-through depend, of course, on 
the cash fl ow patterns of the underlying mortgages. The projected monthly 
payment for a level-paying fi xed-rate mortgage is given by formula (14.8). 
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where
It  = the projected monthly mortgage payment for month t
Mmt−1 = the projected mortgage balance at the end of month t - 1, 

assuming that prepayments have occurred in the past
n =  mortgage term, in months 
r = annualized interest rate 

The interest portion of the projected monthly mortgage payment, it , 
is calculated using equation (14.9).

 i M it mt= −1  (14.9)

where 
i = the interest amount 

Equation (14.9) states that the projected monthly interest payment can 
be obtained by multiplying the mortgage balance at the end of the previous 
month by the monthly interest rate. The expression for calculating the pro-
jected scheduled monthly principal payment for any month is (14.10).

 p I it t t= −  (14.10)

where 
pt  = the projected scheduled principal payment for the month t

The projected monthly principal prepayment, which is an expected 
fi gure only and not a model forecast, is given by (14.11). 
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 pp SMM M pt t mt t= −( )−1  (14.11)

where 
ppt  = the projected monthly principal prepayment for month t. 

Equations (14.9) through (14.11) calculate values for
❑ the projected monthly interest payment
❑ the projected scheduled monthly principal payment
❑ the projected monthly principal prepayment

Combining these values, as in (14.12), gives the total cash fl ow that a 
holder of a mortgage-backed bond receives in any month. 

 cf i p ppt t t t= + +  (14.12)

where 
cft = the cash fl ow received in month t

Using a projected prepayment rate enables analysts to evaluate 
mortgage-backed bonds. The original PSA benchmarks were based on 
the observation that prepayment rates tend to stabilize after the fi rst 
thirty months of a mortgage and assumed a linear increase in these 
rates. They do not refl ect seasonal variations in prepayment patterns 
nor the different behavior patterns of different types of mortgages. 

The PSA benchmarks can be applied to assumptions about defaults to 
produce the PSA standard default assumption (SDA) benchmark, which is 
used to assess the potential default rate for a mortgage pool. This bench-
mark is used only for nonagency mortgage-backed bonds, since agency 
securities are guaranteed by one of the three government or government-
sponsored agencies. The standard benchmark, 100 SDA, assumes that the 
default rate in the fi rst month of a mortgage is 0.02 percent and that the 
rate increases in a linear fashion by 0.02 percentage points each month 
until the thirtieth one, when it levels off at 0.60 percent. It remains at 
0.60 percent until month 60, when it begins to fall to 0.03 percent until it 
reaches 0.03 percent in month 120, remaining at that level for the rest of 
the mortgage term. The other benchmarks have similar patterns.

Prepayment Models
The PSA standard benchmark discussed in the previous section assumes cer-
tain prepayment rates and can be used to calculate the prepayment proceeds 
of a mortgage. It is not, strictly speaking, a prepayment model, because it 
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cannot be used to estimate actual prepayments of a mortgage pool. A pre-
payment model does attempt to do this, by modeling the statistical relation-
ships between the various factors that affect the level of prepayment. These 
factors are the current mortgage rate, the characteristics of the mortgages 
in the pool, seasonal infl uences, and the general business cycle. 

The prevailing mortgage interest rate and its spread above or below the 
original contract rate are probably the most important factors in deter-
mining the level of prepayment, since they infl uence borrowers’ decisions 
about refi nancing their mortgages. If the current rate is materially below 
the original one, for instance, borrowers will prepay their loans. Because 
the mortgage rate refl ects the general bank base rate at the time, the level 
of market interest rates has the greatest impact on mortgage prepayment 
levels. The current mortgage rate also affects housing prices: when mort-
gages are seen as “cheap,” people are more likely to purchase homes, driv-
ing prices up. This rate has an impact on how likely it is that people will 
repay early. The pattern followed by mortgage rates since the original loan 
also has an impact on prepayments, a phenomenon known as refi nancing 
burnout. Presumably, the point is that if mortgage rates have been trend-
ing consistently downward for a long period, everyone who can refi nance 
will have done so, so the prepayment rate slows.

The housing market and mortgage activity also appear to follow seasonal 
patterns. Spring and summer see the strongest action, winter the weakest. 

Generally, mortgage activity refl ects the economic cycle. An economy 
that is performing strongly will see increasing levels of borrowing. How-
ever, as the economy picks up, this brings the risk of higher infl ation, 
such that interest rates need to be raised by the Federal Reserve to cool 
the economy. This infl uences mortgage activity and also paradoxically sees 
higher repayments, as people seek to come out of debt. However, if the 
slowdown is not graduated, but turns into a recession, prepayment activ-
ity falls off as people are not able to repay early. The various factors have 
been combined to calculate expected prepayment levels. Fabozzi (1997), 
for example, cites equation (14.13), which a U.S. investment bank uses to 
calculate expected prepayments.

 (14.13)

 
Monthly prepayment rate Refinancing Incentive Season mul= ( ) × ttiplier

Month multiplier Burnout

( ) ×

×( ) × ( )

Collateralized Mortgage Securities
Collateralized mortgage obligations, which were described earlier, account 
for a large segment of the U.S. debt capital market. The majority of CMOs 
are issued by government-sponsored agencies. They thus have Treasury 
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bond credit quality, but they offer signifi cantly higher yields—a combina-
tion that makes the instruments attractive to a range of institutional inves-
tors, as does the ability to tailor their characteristics to specifi c investment 
needs. This section reviews some of the newer CMO structures.

The CMO market in the United States experienced rapid growth 
during the 1990s. According to the securitization newsletter Asset-Backed 
Alert, a high of $324 billion in the securities was issued in 1993; by 1998, 
this fi gure had fallen to just under $100 billion. The growth of the market 
brought with it a range of new structures. To meet the demands of bond-
holders desiring lower exposure to prepayment risk, for example, planned 
amortization classes, or PACs, and targeted amortization classes, TACs, 
were introduced. Very accurately defi ned maturity, or VADM, bonds, 
which are guaranteed not to extend beyond a stated date, were created to 
remove the uncertainty concerning the term of mortgage-backed bonds. 
In the United Kingdom and certain overseas markets, mortgage-backed 
bonds pay fl oating-rate coupons, and the desire of foreign investors to 
have something similar in the U.S. domestic market led to the creation of 
bonds with coupons linked to LIBOR. 

Originally, mortgage-backed bonds were created from individual un-
derlying mortgages. CMOs created in this manner are known as whole 
loan. In contrast, the mortgages underlying agency-issued CMOs have 
already been pooled and securitized, usually as pass-throughs. Whole-loan 
CMOs are thus based on cash fl ows from an entire pool of individual 
mortgages rather than on a pass-through security formed from this pool. 
As with agency CMOs, however, the underlying mortgages in a whole-
loan pool generally have the same risk, maturity, and interest rate. 

Whole-loan CMOs also differ from agency bonds in the size of the 
underlying mortgages: those backing agency bonds are limited to a stated 
maximum size and so tend to be smaller than the ones backing whole-loan 
CMOs, which may include jumbo loans. Another difference between 
whole-loan and agency CMOs concerns compensating interest. Virtually 
all mortgage-backed securities pay principal and interest monthly, on a 
fi xed coupon date. The underlying mortgages, however, may be paid off 
on any day of the month. Agency-issued securities guarantee their bond-
holders interest payments for the complete month, even if the underlying 
mortgage has been paid off ahead of the coupon date and so has not gen-
erated any interest for that month. Whole-loan CMOs do not offer this 
guarantee. Holders of these bonds may thus receive less than one month’s 
interest on the coupon date. Some issuers, though not all, will make a 
compensating interest payment to bondholders to cover the shortfall.

Following Sundaresan (1997, page 389), the primary features of 
CMOs in the U.S. market may be summarized as follows: 
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❑ Credit quality. CMOs issued by U.S. government agencies have 
the same guarantee against default as agency pass-through securities and 
so may be considered risk-free. They therefore do not require any form of 
credit insurance or credit enhancement. Whole-loan CMOs do not carry 
a government guarantee and are rated by credit rating agencies. Most of 
them have triple-A ratings, either because their mortgage pools generate 
cash fl ows well in excess of what is required to service the interest obliga-
tions of all tranches, or because of the high quality of the issuing vehicles 
or through some credit enhancement. CMOs also tend to be signifi cantly 
overcollateralized.

❑ Interest frequency. The notes usually pay semiannual or quarterly 
coupons. The underlying mortgages, however, pay interest monthly or 
almost daily. The cash generated between coupon dates is reinvested at 
money market rates. The preferred reinvestment vehicle is a guaranteed in-
vestment contract (GIC), but only a few banks and insurance companies 
offer GICs, so most issuers settle for money market accounts. However, 
the providers of GICs will usually accept much smaller deposits, some-
times as little as $100,000, than are required for interbank deposits, which 
are another option for investing the excess cash. 

❑ Cash fl ow profi le. CMOs’ profi les are based on an assumed 
prepayment rate, known as the pricing speed, which refl ects current market 
expectations for prepayment levels and market interest rates. 

❑ Maturity. Originally, virtually all CMOs were created from un-
derlying mortgage collateral with 30-year stated maturities. During the 
1990s, issues were formed from shorter-dated collateral, including 5- to 
7-year and 15- to 20-year mortgages. Still, most CMOs have long terms.

❑ Trading conventions. CMOs trade on a yield basis, as opposed to 
a price basis, and are usually quoted as a spread over the yield of the Trea-
sury security with the most similar maturity. Like their cash fl ows, CMOs’ 
yields are based on assumed prepayment rates. CMOs are settled on a T+3 
basis. Agency issues are cleared via an electronic book-entry system run 
by the Federal Reserve, known as Fedwire; whole-loan issues are cleared 
using either physical delivery or by electronic transfer. New issues of 
CMOs settle from one to three months after the initial offer date.

CMOs have two basic structures: sequential pay and planned amortiza-
tion class, or PAC.

Sequential Pay
One of the demands that drove the design of CMOs was for mortgage-
backed bonds with a wider range of maturities. Most CMO structures 
redirect principal payments sequentially to individual tranches, according 
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to each one’s stated maturity. That is, principal payments go to the tranche 
with the shortest stated maturity until it is completely redeemed and are 
then allocated to the next maturity class, continuing in this manner until 
all the bonds in the structure are retired. Sequential-pay CMOs are attrac-
tive to a wide range of investors, particularly those with shorter investment 
horizons, because they can purchase only the CMO class whose maturity 
terms meet their requirements. Investors with longer investment horizons 
are protected from prepayment risk in the early years of the issue, when 
principal payments are used to pay off the shorter-dated tranches.

FIGURE 14.4 shows a typical generic CMO sequential structure. The 
collateral cash fl ows are allocated to each tranche in specifi ed order. The 
fi rst tranche is allotted both its coupon and any prepayments. The remain-
ing tranches receive only their coupon payments until the fi rst one is fully 
retired. 

Planned Amortization Class
The fi rst CMO with a PAC structure was issued in 1986, in response to 
a demand for less interest-rate-sensitive mortgage-backed structures that 
was sparked by a period of sustained falls in market rates. PAC structures 
are designed to reduce prepayment risk and the volatility of the weighted 
average life measure, which is related to the prepayment rate. PAC CMOs 
have principal-payment schedules that are unaffected by changes in pre-
payment rates. These schedules, similar to those of corporate-bond sinking 
funds, are based on the minimum amounts of principal cash fl ow that will 
be produced by the underlying mortgage pool at two different prepayment 
rates. These rates together defi ne a range known as a PAC band. 

PAC bands are defi ned by prepayment rates set at a low and a high 
PSA standard—for example, 50 percent PSA and 250 percent PSA. This 

FIGURE 14.4  Generic CMO Sequential Structure

     AVERAGE LIFE 
  TRANCHE PRINCIPAL COUPONS (YEARS) YIELD

A 100 7.00% 2.5 2-year benchmark plus 80 bps

B 250 7.00% 5 5-year benchmark plus 100 bps

C 75 7.00% 10 10-year benchmark plus 120 bps

Z 75 7.00% 20 30-year benchmark plus 150 bps
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constrains the amount of principal repayment: in the early years of the 
issue, the lower standard serves as a fl oor for the minimum principal re-
ceived, while later in the bond’s life the payment schedule is constrained 
by the upper PSA standard. The total principal cash fl ows under the PAC 
schedule determine the value of PACs in an issue.

In the PAC structure, the uncertainty of principal payments is directed 
to another class of security, i.e., another tranche in the CMO, known as 
the companion, or support, class. When prepayment rates are high, com-
panion issues support the main PACs by absorbing any principal prepay-
ments that are in excess of the PAC schedule; when the rate falls, the com-
panion amortization is delayed if principal prepayments are not suffi cient 
to reach the minimum stipulated by the PAC band. Accordingly, when 
prepayment rates are high, the companions’ average life shortens; when 
rates are low, their average life lengthens. Within the set of PACs and the 
set of companions, the principal cash fl ows can be allotted sequentially, as 
in the sequential-pay structure. 

PACs exhibit lower price volatility than other mortgage securities. 
When the prepayment rates are within the PAC band, their prices are 
fairly stable; when rates move outside the band, volatility increases by a 
smaller amount than for non-PAC bonds, because the prepayment risk 
is transferred to the companions. For this reason, PAC issues trade at 
lower spreads to the Treasury yield curve than do other issues with similar 
maturities. The companion bonds are always priced at a wider spread than 
the PACs, refl ecting their higher prepayment risk.

Within the CMO structure may be some PAC bonds with less prepay-
ment risk than others, known as Type II and Type III PACs. A Type II PAC 
has a narrower band than a standard PAC, thus reducing prepayment risk. 
If prepayment rates remain within their narrower bands, Type II PACs 
trade like standard PACs; if rates move outside their bands, the extra cash 
fl ow is redirected to the companions only if the rates move above the range. 
Otherwise, there is no excess and the companion amortization is delayed. 
Type II PACs are second in priority to the standard PACs and so trade at a 
higher yield. If prepayment rates remain high for an extended period and 
all the companions are redeemed, the Type II PACs take over the function 
of companion and, with it, the higher prepayment risk. Type III PACs 
function like Type II PACs, but their band ranges are even tighter.

The upper and lower limits of a PAC band may “drift” during the 
life of the CMO, regardless of actual prepayment rates. This drift results 
from the interaction of actual cash prepayments with the bands and from 
changes in the collateral balance and in the ratio between the nominal 
values of the PACs and the companions. The type of drift and its impact 
depend on the prepayment rate, as illustrated in the following scenarios:
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❑ The prepayment rate lies within the current band. If this situa-
tion continues, the upper limit will rise, since prepayments have been be-
low the maximum level, leaving more companion issues to receive future 
prepayments. The lower limit rises as well, because prepayments have been 
above the minimum level, resulting in less collateral to generate future 
principal payments. The upper limit, though, tends to rise more quickly 
than the lower one, widening the range.

❑ The prepayment rate lies above the band. If this continues, the 
number of companions available to receive faster prepayments will fall, and 
the band will narrow, its upper and lower limits converging completely when 
all the companion bonds have been redeemed. At that point, the PAC will 
trade as a conventional sequential-pay security until it is redeemed.

❑ The prepayment rate lies below the band. The upper limit will 
drift upward, because more companion bonds are available to receive a 
greater level of prepayments in the future; the lower band may also rise by 
a small amount. This type of drift is relatively rare, however, since PACs 
have the highest priority of all classes in a CMO structure until the pay-
ment schedule is back on track. 

Band drift occurs over time and is sometimes not noticeable. Signifi -
cant changes in the band levels only take place if the prepayment rate is 
outside the band for a prolonged period. Prepayment rates that move out-
side the bands for short spells do not have any effect on the bands.

Targeted Amortization Class
Targeted amortization class, or TAC, bonds were created to cater to inves-
tors who require prepayment protection but at a higher yield than would 
be available with a PAC. Essentially, a TAC is a PAC whose “band” con-
sists of only one standard prepayment rate. Like PACs, TACs amortize 
principal according to a schedule when the actual prepayment rate accords 
with this standard and, when the rate moves above it, use the extra princi-
pal amounts to pay off companion bonds. They differ from PACs mainly 
in taking on extra prepayment risk when prepayments fall below the rate 
required to maintain the payment schedule, extending the issue’s average 
life. Because one element of the PAC band is removed, TACs trade at a 
higher yield. 

The preference for TACs over PACs is a function of the prevailing 
interest rate environment. When current rates are low or are expected to 
fall, there is a risk of prepayments increasing, reducing the average life of 
the bond. In this scenario, investors may be willing to forgo the protection 
against an extension in the bond’s average life provided by PACs, deeming 
it unlikely to be required, and take the extra yield offered by the TAC.
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Z-Class Bonds
The Z-class, or Z, bond ranks below all other classes in the CMO’s struc-
ture and pays no cash fl ows for part of its life, functioning essentially like 
a zero-coupon bond (hence its name). When the CMO is issued, the Z 
bond, also known as an accrual, or accretion, bond, has a relatively small 
nominal value. At the start of its life, it pays out cash fl ows on a monthly 
basis, as determined by its coupon. However, when the Z bond itself is 
not receiving principal payments, its cash fl ows are used to retire some 
of the principal of the other classes in the structure. In their place, the 
bond receives credits, which increase its face value by the amount of the 
forgone coupon. As a result, its principal amount is higher at the end of 
its life than at the start. When all classes of bond ahead of the Z bond 
have been retired, the Z bond itself starts to pay out principal and inter-
est cash fl ows.

In a conventional sequential-pay structure, the other classes in the 
CMO receive some of their principal prepayments from the Z bond, 
which lowers their average-life volatility. Z bonds are an alternative for 
investors who might otherwise purchase Treasury zero-coupon bonds. 
Like zero coupons, these bonds have no reinvestment risk, but they have 
higher yields than Treasury strips with similar average lives.

Interest-Only and Principal-Only Classes
As noted earlier, stripped mortgage-backed securities, or stripped bonds, 
are created by splitting the cash fl ows payable by a pool of mortgages into 
interest and principal payments and assigning the two different streams to 
two different classes of bonds: interest-only, or IO, and principal-only, or 
PO, bonds. 

The PO bond is similar to a zero-coupon in that it is issued at a 
discount to par value. The PO bondholder’s return is a function of the 
rapidity at which prepayments are made; the quicker the prepayment, the 
higher the return. This is like the buyer of a zero-coupon bond receiving 
the maturity payment ahead of the redemption date. The highest possible 
return for the bondholder would occur if all the mortgages were prepaid 
the instant after the PO bond was bought. A low return occurs if all the 
mortgages are held until maturity, so that there are no prepayments. 

The price of a PO bond fl uctuates with mortgage interest rates. As noted 
earlier, the majority of mortgages are fi xed-rate loans. If mortgage rates fall 
below the PO bond’s coupon rate, the volume of prepayments should in-
crease as the individuals holding the underlying loans refi nance them, 
speeding the stream of payments to the bondholder. The PO’s price will 
rise both because of the faster cash fl ows and because the fl ows are now dis-
counted at a lower rate. The opposite happens when mortgage rates rise. 
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An IO bond has no par value, since it is essentially just a stream of 
cash fl ows, consisting of the interest payments on the underlying mort-
gage principal outstanding. These cash fl ows cease once the principal is 
redeemed, so a higher rate of prepayment depresses the IO price. The risk 
for investors is that prepayments occur so quickly that they don’t receive 
enough interest payments to cover what they paid for their bond. 

An IO’s price, like that of a PO, is a function of mortgage rates. The 
relationship is more complicated, though. When rates fall below the bond 
coupon, increasing the expected prepayment rate and so reducing expected 
cash fl ows to the IO, the IO price falls as well, even though the cash fl ows 
themselves are discounted at a lower interest rate. When mortgage rates 
rise, the outlook for IO cash fl ows improves, but they will be discounted at 
a higher rate, so the bond’s price may move in either direction. Generally, 
though, IOs’ prices move in the same direction as interest rates—a curious 
characteristic for a bond. 

PO and IO issues have much greater interest rate sensitivity than the 
pass-through security from which they are created, exhibiting extreme 
price volatility when the mortgage rate is moving in either direction. Note 
that POs and IOs can both be created from the mortgage pool underly-
ing one pass-through security, so their combined modifi ed durations must 
equal that of the original bond.

FIGURE 14.5 compares the price sensitivities of a 7 percent pass-through 
security and of the IO and PO created from it. Note that the pass-through’s 
price is not particularly sensitive to a fall in the mortgage rate below its cou-
pon rate of 7 percent. This illustrates the negative convexity of pass-through 
securities (discussed further below). The price sensitivities of the two strip 
issues are very different. As the mortgage rate rises above the coupon rate, the 
PO’s price falls dramatically, while the IO’s rises. On the other hand, the IO’s 
price drops signifi cantly when mortgage rates fall below the coupon rate.  

Early strip issues were created with an unequal amount of coupon and 
principal, resulting in a synthetic coupon rate that was different from the 
coupon on the underlying bond. The early strips were not IOs or POs. 
Instead principal was distributed unequally among different classes of 
the pass-through, which were associated with correspondingly different 
coupons, all of which were different from the interest rate on the un-
derlying mortgages. These instruments were known as synthetic-coupon 
pass-throughs. Nowadays it is more typical to allocate all the interest to one 
class, the IO, and all of the principal to the PO. 

The most common CMO structures have a portion of their principal 
split into IO and PO bonds. Some CMOs, though, are made up entirely 
of IO and PO bonds. The amount of principal used to create stripped 
securities depends on investor demand. 
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IO issues created from a class of CMOs known as real estate mort-
gage investment conduits, or REMICs, can have quite esoteric terms. For 
example, the IO classes might be issued with a small amount of principal, 
known as the nominal balance. The cash fl ows for IOs with this structure 
are created by amortizing and prepaying the nominal balance. Because the 
nominal balance is small, the IO has a multidigit coupon and very high 
price. Ames (1997) cites the example of an IO paying a 1,183 percent 
coupon and priced at $3,626-12, which implies a bond whose price has 
risen by more than thirty times its original face value. 

Strips created from whole-loan CMOs trade differently from those 
issued out of agency CMOs, due to the nature of the underlying collateral: 
they are viewed differently by investors and so their secondary market 
characteristics are less liquid.

IOs and POs are particularly useful in whole-loan CMOs, because of 
the way their coupons are calculated. Agency CMOs pay fi xed coupons, 
but a whole-loan CMO’s coupons are based on the weighted average of the 
underlying mortgages’ coupons. During the life of a whole-loan issue, its 
coupon will change as prepayments alter the amount of principal. Strip-
ping a portion of the principal and interest cash fl ows from the underlying 
mortgages leaves collateral with a more stable average life, preserving the 
coupon payments of all issues within the structure. 
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FIGURE 14.5  Sensitivity to Changes in the Mortgage Rate of 
Pass-Through, IO, and PO Prices
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Nonagency CMO Bonds
The structure and terms of nonagency CMOs do not differ signifi cantly 
from those of agency CMOs. The key feature of nonagency CMOs is that 
they are not guaranteed by government agencies and so carry an element 
of credit risk, in the same way that corporate bonds expose investors to 
credit risk. To attract investors, most nonagency CMOs incorporate an 
element of credit enhancement. This usually results in a triple-A rating. 
Indeed, a large majority of nonagency CMOs are triple-A rated, with very 
few falling below double-A. All four major private credit rating agencies 
analyze and rate nonagency CMOs. The rating granted a particular CMO 
depends on several factors, including

❑  the term of the underlying loans
❑  the loans’ size, whether conforming or jumbo 
❑  the loans’ interest basis, whether level-pay fi xed-rate, variable, 

or other
❑  the type of property securing the loans 
❑  the geographical area within which the loans were made
❑  the loans’ purpose, whether for a fi rst purchase or a refi nancing

Credit Enhancements
Nonagency CMOs may have either an external or an internal credit en-
hancement. An external enhancement is a guarantee by a third party to 
cover losses on the issue. Usually, a set percentage, such as 25 percent, of 
the issue of the face value is guaranteed, rather than the entire issue. The 
guarantee can take the form of a letter of credit, bond insurance, or pool 
insurance. Pool insurance policies are issued by specialized agencies to 
cover losses arising from a default or foreclosure. Usually the coverage is 
for a cash amount that remains the same during the life of the pool. Some 
policies, however, are set up so that the coverage falls over time. Since only 
defaults and foreclosures are covered, investors wishing to be protected 
against other types of loss, such as sickness or death, must arrange their 
own insurance. 

External credit enhancement still leaves a CMO exposed to credit 
risk—the risk associated with the insurance provider. That is, the issue 
can be downgraded because of a deterioration in the credit quality of the 
provider. Investors who purchase nonagency CMOs must ensure that they 
are satisfi ed with the credit quality of the third-party guarantor, as well as 
with the quality of the underlying mortgage pool. 

An external credit enhancement has no impact on the cash fl ow struc-
ture of the CMO. Internal credit enhancements, which are generally more 
complex, sometimes do affect the cash fl ow. The two most common types 
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of internal credit enhancement are reserve funds and senior/subordinated 
structures.

There are two types of reserve funds: cash reserve funds and excess 
servicing spread accounts. A cash reserve fund is a separate fund into which 
a portion of the profi ts from the bond’s issuance have been deposited and 
invested in short-term bank securities. In a default, the cash in the fund 
is used to compensate investors who have suffered capital losses. A cash 
reserve fund is often set up in conjunction with another type of credit 
enhancement, such as a letter of credit. 

An excess servicing spread account is a separate account into which is 
deposited the excess spread or cash left after the mortgages’ coupon, servic-
ing fees, and other expenses have been paid. For instance, if an issue’s gross 
weighted average coupon—that is, the average of the interest rates of the 
underlying mortgages, before adjustment for service fees—is 7.50 percent, 
the service fee is 0.10 percent, and the net weighted average coupon (the 
average of the pass-through rates of the mortgage securities backing the 
CMO) is 7.25 percent, then the excess is 0.15 percent. This amount is 
paid into the spread account, which will grow steadily during the bond’s 
life. As with the cash reserve fund, the cash in the account can be used to 
compensate for losses on the bond that affect investors.

Senior/subordinated structures are the most common type of internal 
credit enhancement encountered in the market. Essentially, the CMO is 
divided into two classes of bonds, one senior and the other subordinated. 
The latter absorbs all the losses arising from default or other cause, leaving 
the senior class unaffected. The subordinated bonds clearly have higher 
risk than the senior class and so trade at a higher yield. Most senior/
subordinated arrangements incorporate a shifting interest structure, which 
redirects prepayments from the subordinated to the senior class. This 
alters the cash fl ow characteristics of the senior notes, whether or not 
defaults or similar events occur. 

Commercial Mortgage-Backed Securities
The loans underlying commercial mortgage-backed securities are, as 
the name implies, for commercial, as opposed to residential, properties. 
CMBSs trade like other mortgage securities but differ in structure. 

Issuing a CMBS 
Commercial mortgages are loans made against commercial property. A 
CMBS is created from a pool, or trust, of commercial mortgages, whose 
interest and principal payments back the bond’s cash. It is rated in the 
same way as a residential mortgage security and usually includes a credit 
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enhancement. The issuers of CMBS bonds are generally the same as those 
of RMBS, although in the United States there is of course the agency mar-
ket for RMBS. However, banks are large issuers of CMBS. Commercial 
mortgage-backed issues typically have sequential-pay structures in which 
the bonds are retired in the order of their credit ratings. That is, the triple-
A-rated bonds will be retired ahead of the double-A-rated bonds, and so 
on. This is similar to different tranches that have different ratings. 

Borrowers who repay their commercial mortgages early are penalized, 
usually with an interest charge levied on the fi nal principal. Early pay-
ments may also be prohibited by a prepayment “lockout” in the mortgage 
contract. Commercial mortgages’ early-prepayment protection is repeated 
in the bonds created from them, sometimes in the form of call protection. 
The ratings of individual issues in the structure already provide some pro-
tection, since the highest-rated ones are paid off fi rst. The highest-rated 
classes also have the most protection from loss of principal because of 
default of an underlying mortgage, since this will affect the lowest-rated 
bonds fi rst.

In addition to their early-retirement protection, commercial mort-
gages differ from residential ones in that many of them are balloon loans. 
As explained above, a large part of the principal of a balloon loan is paid 
off on a single date. This makes CMBSs similar to plain vanilla, or bullet, 
bonds, an attraction for investors who prefer more certainty about terms 
to maturity. 

Types of CMBS Structures
In the U.S. market, there are fi ve types of CMBS structures: liquidating 
trusts, multiproperty single borrower, multiproperty conduit, multiproperty 
nonconduit, and single-property/single-borrower. 

Single-property/single-borrower loans are self-explanatory and refer 
to a loan taken out by one obligor on one property. Liquidating trusts 
account for a small part of the market by face value. They are issued against 
nonperforming loans and are therefore often referred to as nonperforming 
CMBSs. Among their distinctive features are a fast-pay structure, which 
signifi es that all cash fl ows from the mortgage pool are used to redeem the 
most senior bond fi rst, and overcollateralization, meaning that the collec-
tive face value of the bonds created is signifi cantly lower than that of the 
underlying loans. Because of their overcollateralization, CMBSs are paid 
off earlier than other mortgage securities and receive cash fl ows from only 
a portion of the underlying loans. They are usually issued with relatively 
short average lives. A target date is set for paying off all the CMBS classes. 
The bonds usually have a provision to raise the coupon rate should this 
target not be met. 
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The single-borrower, multiproperty structure accounts for a large 
part of the CMBS market. Bonds having this structure are cross-
collateralized—that is, the property used as collateral for each individual 
loan is also pledged against every other loan in the underlying pool. 
Another provision in the structure, known as cross-default, allows 
the lender to call every loan in the pool if any one of them defaults. 
Together, cross-collateralization and cross-default assure that suffi cient 
cash fl ow is available to meet the collective debt obligations of all of 
the loans. These properties boost the issue’s credit rating. By the same 
token, the properties of the liquidating trust enhance the rating of the 
associated CMO. A property release provision in the structure prohibits 
the lender from removing or prepaying the stronger loans in the book, 
making it diffi cult to cherry-pick good loans. Another provision protect-
ing investors against this risk that is commonly included in the structure 
prevents the issuer from substituting one property for another, which 
means that the credit quality of original underlying loans is guaranteed. 
These two provisions also enhance the credit of the CMBS. 

Conduits are commercial lending entities set up solely to generate col-
lateral to be used in securitization. They are required by more-frequent 
issuers. The major investment banks have all established conduit arms. 
Conduits are responsible for originating collateral that meets the investor’s 
requirements on loan type (whether amortizing or balloon, and so on), 
loan term, geographic spread of the properties, and the time that the loans 
were struck. Generally, pool diversifi cation in terms of size and location 
is desirable, since this reduces the default risk for the investor. After it 
has generated the collateral, the conduit structures the deal with terms 
similar to those of CMOs but with the additional features described in 
this section. 

The multiproperty nonconduit structure is useful for originators with 
large pools of assets that do not expect to tap the market frequently. This 
differs from the single-borrower, multiproperty structure only in terms of 
how often it issues. It has more in common with a single-issuer, residential 
MBS transaction than with the conduit structure, with the added features 
of cross-collateralization and cross-default. 

Evaluation and Analysis 
of Mortgage-Backed Bonds

Pricing and hedging mortgage-backed securities are complex subjects. 
The following sections present a brief introduction. Readers interested 
in more-in-depth discussions should consult the Reference section for 
appropriate texts. 
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Term to Maturity
Term to maturity is a very important measure. It represents the period 
during which a bond’s return is being generated and helps determine 
its sensitivity to changes in market interest rates. It is also a basis for 
comparing bonds. Such analyses and comparisons cannot be made for 
mortgage pass-throughs using their stated maturities, because these can 
be reduced by prepayments. Instead, for evaluating and comparing these 
securities, the market uses estimated values—specifi cally, average life and 
duration.

The average life of a mortgage pass-through security, also known as its 
weighted-average life, is the weighted-average time to return of a unit of 
principal payment that comprises both scheduled payments and prepay-
ments. The time from the end of the term measured by the average life 
to the fi nal scheduled principal payment is the bond’s tail. Average life is 
derived using equation (14.14).
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where 
n = the number of months remaining in the bond’s stated term to 

maturity 

As explained in chapter 2, a bond’s modifi ed or Macaulay’s duration 
is the average time to receipt of its cash fl ows, weighted according to their 
present values. To compute a mortgage-backed bond’s duration, it is nec-
essary to project its cash fl ows using an assumed prepayment rate. These 
projections, together with the bond price and the periodic interest rate, 
derived from the yield, may then be used to arrive at the bond’s periodic 
duration, which is divided by twelve (or four, in the case of a bond that 
pays quarterly) to arrive at its duration in years. 

Calculating Yield and Price: Static Cash Flow Model
There are a number of ways to calculate the yield on a mortgage-backed 
bond. One of the most common is the static cash fl ow model. This assumes 
a single prepayment rate to estimate the cash fl ows for the bond and does 
not take into account how changes in market conditions might affect the 
prepayment pattern. 

As explained in chapter 1, yield is conventionally defi ned as the rate 
at which a bond’s expected cash fl ows must be discounted so that the sum 
of their present values will equal the bond’s clean price—that is, the price 
excluding any accrued interest. This is known as the bond’s redemption 
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yield or yield to maturity. For mortgage-backed bonds, it is the cash fl ow 
or mortgage yield. This is calculated by plugging projected cash fl ows based 
on an assumed prepayment rate into formula (14.15).
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where 
N = number of interest periods
t = each interest payment date 
ri = the mortgage yield 

Equation (14.15) computes the yield for a bond making monthly cou-
pon payments (as the majority of mortgage-backed bonds do, although some 
pay quarterly). For purposes of comparison, this fi gure must be converted 
to a bond-equivalent yield. Equation (14.16) derives the annualized bond-
equivalent yield for a mortgage-backed bond paying monthly coupons. 

 rm riM= +( ) −⎡
⎣⎢

⎤
⎦⎥2 1 16  (14.16)

where 
rm = the bond-equivalent yield 
riM  = the interest rate that will equate the present value of the projected 

monthly cash fl ows for the mortgage-backed bond to its current price  

In the U.S. and U.K. markets, the basis for comparison is the relevant 
government bond yield, which is semiannual. Equation (14.17) derives 
the equivalent semiannual yield. (See chapter 1 for a discussion of convert-
ing from one payment basis to another.)

 rm riMs/a = +( ) −1 16  (14.17)

Cash fl ow yield calculated in this way is essentially a redemption 
yield calculated assuming a prepayment rate to project the cash fl ows. 
As such, it has the same drawbacks as the redemption yield for a plain 
vanilla bond: it assumes that all the cash fl ows will be reinvested at the 
same interest rate and that the bond will be held to maturity. In fact, the 
potential inaccuracy is even greater for a mortgage-backed bond because 
the frequency of interest payments is higher, which makes the reinvest-
ment risk greater. The fi nal yield of a mortgage-backed bond depends 
on the performance of the mortgages in the pool—specifi cally, their 
prepayment pattern.
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Given the nature of a mortgage-backed bond’s cash fl ows, its exact 
yield cannot be calculated. Market participants, however, commonly com-
pare an MBS’s cash fl ow yield to the redemption yield of a government 
bond with a similar duration or a term to maturity similar to the MBS’s 
average life. The usual convention is to quote the spread over the govern-
ment bond.

As noted in chapter 3, it is possible to calculate a bond’s price given 
its yield and vice versa. As with a plain vanilla bond, a mortgage-backed 
bond’s price is the sum of the present values of its projected cash fl ows. 
The discount rate used to derive the present values is the bond-equivalent 
yield converted to a monthly basis.  

The cash fl ows of IO and PO bonds are dependent on the cash fl ows 
of the underlying pass-through security, which is itself dependent on the 
cash fl ows of the underlying mortgage pool. To calculate the prices of these 
strips, their cash fl ows must be estimated using a prepayment rate. The 
price of an IO is the present value of the projected interest payments; the 
price of the PO is the present values of the projected principal payments, 
comprising the scheduled principal payments and the projected principal 
prepayments.

Bond Price and Option-Adjusted Spread
The prepayment option of the holders of mortgages underlying a mort-
gage security is essentially a call option. Not surprisingly, then, mortgage 
securities often behave like callable bonds. 

The optionality of a mortgage-backed bond, and the volatility of 
its yield, frequently have a negative impact on the bondholders. This is 
for two reasons: the actual yield realized during the holding period has 
a high probability of being lower than the anticipated yield, which was 
calculated on the basis of an assumed prepayment level, and mortgages 
are frequently prepaid when the bondholders will suffer the most—that 
is, when rates have fallen, leaving them to reinvest repaid principal at a 
lower rate.

For investors these features represent the biggest risk of holding a 
mortgage security, and market analysts attempt to measure and quantify 
it. They usually do so using a form of option-adjusted spread analysis. 
In this approach, the value of the mortgagors’ prepayment option is ex-
pressed as a basis-point penalty that is subtracted from the bond’s expected 
yield spread. The penalty is calculated using a binomial model or a simula-
tion model to generate a range of future interest rate paths only some of 
which will cause mortgagors to prepay. Then the paths resulting in prepay-
ment are evaluated with respect to their impacts on the mortgage bond’s 
expected yield spread over a government bond. 
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The OAS-derived yield spread is based on the present values of ex-
pected cash fl ows discounted using government bond–derived forward 
rates. The spread between the cash fl ow yield and the government bond 
yield is based on yields to maturity. The OAS spread is added to the entire 
yield curve, whereas a yield spread is over a single point on the govern-
ment bond yield curve. For these reasons, the two spreads are not strictly 
comparable. 

Because OAS analysis takes into account a mortgage-backed bond’s 
option feature, it is less affected by a change in interest rates or the yield 
curve, which affect prepayments, than the bond’s yield spread. Assuming a 
fl at yield curve, the relationship between the OAS and the yield spread is 
expressed in equation (14.18).

 OAS Yield spread Cost of option feature= −  (14.18)

This relationship can be observed when yield spreads on current-
coupon mortgages widen during declines in interest rates. As the possibil-
ity of prepayment increases, the cost of the bonds’ option feature rises; 
put another way, the option feature gets closer to being in the money. 
To adjust for the increased value of the option, traders price higher spreads 
into the bond, which keeps the OAS more or less unchanged. 

Effective Duration and Convexity
The modifi ed duration of a bond measures its price sensitivity to a change 
in yield. It is essentially a snapshot of one point in time. It assumes that no 
change in expected cash fl ows will result from a change in market interest 
rates and is thus inappropriate as a measure of the interest rate risk borne 
by a mortgage-backed bond, whose cash fl ows are affected by rate changes 
because of the prepayment effect. 

Mortgage-backed bonds react differently from conventional bonds to 
interest rate changes. When rates fall, prepayments rise (and vice versa), 
shortening (lengthening) the MBS’s duration. This is the opposite of 
what happens with a conventional bond. Mortgage-backed bonds thus 
exhibit negative convexity similar to that displayed by callable bonds. The 
prices of both securities react differently from those of conventional bonds 
to interest rate changes. For these reasons, a more accurate measure of 
mortgage-based bonds’ interest rate sensitivity is effective duration. Effec-
tive duration is based on approximate duration, which can be thought of as 
the median time to receipt of a bond’s cash fl ows, rather than the average 
calculated by Macaulay duration. Approximate duration is derived using 
equation (14.19).
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where
P0 = the initial price of the bond
∆rm = the change in the yield of the bond
P– = the estimated price of the bond if the yield decreases by ∆rm 
P+ =  the estimated price of the bond if the yield increases by ∆rm

Effective duration is essentially approximate duration where P– and P+ 
are obtained using a valuation model—such as a static cash fl ow model, 
a binomial model, or a simulation model—that incorporates the effect 
of a change in interest rates on the expected cash fl ows. The values of 
P– and P+ depend on the assumed prepayment rate. Generally analysts 
assume a higher prepayment rate when the interest rate is at the lower level 
of the two rates—interest and prepayment. 

FIGURE 14.6 illustrates how effective duration—calculated using a 20 
basis point change in rates—differs from modifi ed duration for agency 
mortgage pass-through securities with a range of coupons. It shows that 
modifi ed duration overestimates the price sensitivity of lower-coupon 
bonds. This difference has a signifi cant effect when hedging a mortgage-
backed bond position: using modifi ed duration to calculate the needed 
nominal value of a hedging instrument will be accurate for only very small 
changes in yield. 

The formula for calculating approximate convexity is (14.20). If P– and 
P+ are obtained using a valuation model that incorporates the effect of a 
change in interest rates on the expected cash fl ows, the equation derives 
effective convexity. The effective convexity of a mortgage pass-through 
security is invariably negative.
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Total Return
To assess the value of a mortgage-backed bond over a given investment 
horizon, it is necessary to measure the return generated during the hold-
ing period from the bond’s cash fl ows. This is done using the total return 
framework. 

Computing total return starts with calculating total cash fl ows. A 
mortgage-backed bond’s cash fl ows comprise: 

❑  its projected interest payments and principal repayments and pre-
payments 
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❑  the interest earned by reinvesting all the payments 
❑  the bond’s projected price at the end of the holding period 

The fi rst component can be estimated by assuming a prepayment 
rate during the holding period; the second entails assuming a reinvest-
ment rate. For the third, two assumptions are necessary: one concerning 
the bond’s bond-equivalent yield at the end of the holding period, and 
another about the prepayment rate projected by the market at this point, 
which is a function of the projected yield. 

Plugging the total cash fl ow fi gure into equation (14.21) gives the 
bond’s total return for the holding period, on a monthly basis. 

 TR = 
Total future cash flow amount
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where
Pm = initial investment
n = number of months in the holding period

The monthly return can be converted to an annualized bond-equiva-
lent yield using formulas (1.24a) or (b), as discussed in chapter 1.

FIGURE 14.6  Modified and Effective Duration of Agency 
Mortgage-Backed Bonds
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The return calculated using (14.21) is based on several assumptions. 
The best way to obtain an idea of the return likely to be generated over the 
holding period is to compute a range of returns by using a range of values 
for each assumption.

Price-Yield Curves of Mortgage Pass-Through, PO, and 
IO Securities
When interest rates are high, holders of mortgage-backed bonds want 
prepayments to occur. This is because the rate paid by the underlying 
mortgages, and thus by their bonds, are lower than those available in the 
market and the likelihood of mortgage prepayment at par boosts their 
bonds’ value. Conversely, when interest rates are low, bondholders prefer 
no prepayments, since their bonds’ interest rate is higher than that avail-
able in the market and their value correspondingly high. FIGURE 14.7 
illustrates how the price of a pass-through security with a nominal coupon 
of 7 percent behaves under different prepayment scenarios at different 
market yields.

When no prepayments are made, cash fl ows are certain and the pass-
through’s price and yield behave like those of a conventional bond. At 
an optimal prepayment rate—that is, one based on the assumption that 
homeowners act rationally and refi nance whenever they can reduce their 
mortgage costs by an amount greater than the refi nancing transaction’s 
cost—the bond acts like a callable bond: when interest rates are high, it 
resembles a plain vanilla bond; when rates are lower, its price is capped 
at par. Under what Tuckman (1996) calls “realistic payment” conditions, 
the price behavior is somewhat different. First, when rates are very low, 
the bond’s price is higher than in the other two scenarios. This is because 
a number of mortgage borrowers do not act “optimally,” repaying their 
loans irrespective of the level of interest rates—even when they’re high; 
since prepayments at high rates are good for bondholders, the bond prices 
in the realistic scenario are higher at this end of the yield spectrum than 
are those for the other two models, which predict no prepayments under 
these conditions. 

Second, when interest rates are very low, the bond’s price is higher 
under the realistic scenario than under the optimal one, though not 
as high as in the no-prepayment model. The reason is that, in this en-
vironment, many borrowers will behave “optimally” and prepay their 
loans, but by no means all will. Since prepayments decrease the value 
of a mortgage bond when rates are low, the fact that not all borrowers 
prepay in the “realistic” scenario results in the realistic-prepaid value 
of a mortgage bond being somewhat greater than its optimal-prepaid 
value. This nonprepayment behavior can lead to the bond being valued 
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above par. This is something of an anomaly, considering that the bond 
is then priced above the level at which it can theoretically be called. 
Eventually, though, rates fall far enough to convince all borrowers to 
redeem their loans, and the realistic-prepayments curve moves down 
to par. 

Figure 14.7 demonstrates the negative convexity of mortgage bonds 
through the fact that their prices fall as interest rates decline. This does 
not mean that investors should avoid mortgage-backed bonds in this en-
vironment. As Tuckman (1996) notes, mortgage bonds in this situation 
are paying rates higher than those available elsewhere in the market, par-
ticularly the debt market. The relevant consideration is total return over 
the holding period, not price. Making investment decisions based on price 
behavior alone, Tuckman writes (page 256), is “as bad as concluding that 
premium Treasuries should never be purchased because they will eventu-
ally decline in price to par.”

As already discussed, IOs, which receive the interest payments of the 
underlying collateral, and POs, which receive principal payments, exhibit 
different price behavior from pass-throughs and from each other. Figure 
14.5 (page 263) showed that when interest rates are very high and prepay-
ments, accordingly, unlikely, POs act as if repayable at par on maturity, 
like zero-coupon bonds. When interest rates decline and prepayments 

FIGURE 14.7  Price Behavior of a 7 Percent Coupon Pass-
Through for Different Prepayment Scenarios
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CASE STUDY:  ACE Securities Corp. Home Equity Loan Trust, 
Series 20041

Residential MBSs are characterized as prime and sub-prime, de-
pending on the credit quality of the underlying mortgages. A credit 
quality score known as FICO measures whether the loan is prime 
or sub-prime. Home equity, while previously referring to a different 
type of RMBS, now refers to a sub-prime RMBS transaction.

ACE Securities series 2004 is a sub-prime RMBS transaction 
that closed in the U.S. market in January 2004. It is a securiti-
zation of a pool of sub-prime mortgages originally on the balance 
sheet of Fremont Investment and Loan. Fremont is a commercial 
banking institution that had been engaged in sub-prime mort-
gage lending for more than ten years prior to the transaction, 
and also originated previous home equity securitization deals.

Transaction Summary
Originator Fremont Investment & Loan
Type Senior subordinated residential MBS
Amount $751,303,000
Credit support  Note tranching, overcollateralization, excess 

spread
Servicer The Provident Bank
Trustee HSBC Bank USA
Underwriter Deutsche Bank Securities

The tranche structure for ACE Securities HELT series 2004 is 
shown in FIGURE 14.8. The transaction was undertaken to provide 
a diversifi ed funding source for Fremont, with a size of more than 
$751 million.

The deal is structured as a senior-subordinated overcollateraliza-
tion, with the fi rst three notes all rated as AAA. These are ranked fur-
ther into a super-senior and junior-senior tranche. The note tranching 
is the principal form of credit enhancement, in addition to the 
overcollateralization of 0.85 percent. There is also a reserve account 
to trap excess spread, which is a further credit enhancement. 

The Class A-1 notes also have credit enhancement from Class 
A-3. This works as follows: where the subordinated notes are 
reduced to zero, any losses on the underlying pool of mortgages 
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supporting the notes that are not covered by the overcollateraliza-
tion and the excess spread will be borne by the A-3 notes ahead of 
the A-1 notes. 

This transaction features an unusual feature in that the underly-
ing pool of mortgages is split into two groups, Loan Groups 1 and 
2. Classes A-1 and A-3 are supported by Loan Group 1, and classes 
A-2A, A-2B, and A-2C are supported by Loan Group 2; however, 
there is also cross-collateralization for the senior notes. 

This is an interesting structure but nevertheless represents a 
routine transaction in the highly developed U.S. MBS market.

FIGURE 14.8  ACE Securities Corp. HELT Series 2004-FM1

  CLASS DESCRIPTION AMOUNT $000 COUPON RATING

A-1 Super senior principal & interest 571,643 LIBOR + 0.30 Aaa

A-2A Senior principal & interest 37,604 LIBOR + 0.32 Aaa

A-2B Senior principal & interest 39,000 LIBOR + 0.19 Aaa

A-2C Senior principal & interest 19,127 LIBOR + 0.46 Aaa

A-3 Junior senior principal & interest 63,516 LIBOR + 0.40 Aaa

M-1 Subordinate principal & interest 69,547 LIBOR + 0.60 Aa2

M-2 Subordinate principal & interest 57,128 LIBOR + 1.25 A2

M-3 Subordinate principal & interest 17,387 LIBOR + 1.45 A3

M-4 Subordinate principal & interest 17,387 LIBOR + 1.80 Baa1

M-5 Subordinate principal & interest 14,903 LIBOR + 1.95 Baa2

M-6 Subordinate principal & interest 9,935 LIBOR + 3.50 Baa3

B-1A Subordinate principal & interest 6,955 LIBOR + 3.50 Ba2

B-1B Subordinate principal & interest 6,955 6.00% Ba2

CE Residual – Not rated

P Prepayment penalties – Not rated

R Residual – Not rated
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increase, the POs’ price increases. Other factors are at work, however, that 
make PO prices highly volatile. These are:

❑  the hypersensitivity of POs to the conventional price/yield effect, 
which states that lower interest rates cause higher prices and vice 
versa

❑  the effect on POs’ maturity of prepayment rates—specifi cally, the 
higher the actual and expected rates, the lower the effective matu-
rity and, so, the higher the POs’ price  

IOs’ price/yield relationship is a function of that for POs, obtained by 
subtracting the value of the latter from that of the underlying mortgage 
pass-through. IOs’ prices are very volatile when interest rates are low and 
falling. This may be explained as follows: when rates are high and prepay-
ments very low, IOs’ cash fl ows are known with virtual certainty, so they 
act like plain vanilla bonds. When rates fall and prepayments rise, dimin-
ishing the nominal amount of the mortgages on which interest is charged, 
IOs’ cash fl ows effectively disappear because, unlike pass-throughs and 
other mortgage securities, they don’t receive any principal payments. Their 
prices in these circumstances decline dramatically. Such negative duration 
makes IOs attractive to market makers in mortgage-backed securities as 
interest-rate hedging instruments. 

Chapter Notes 

1. The information source for this case study is Moodys, Inc. and is used with permission. 
The author thanks Andrew Lipton and Paul Kerlogue at Moodys and Serj Walia at KBC 
Financial Products for their kind assistance when preparing this case study. 
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Collateralized Debt Obligations

Collateralized bond obligations (CBOs) and collateralized loan 
obligations (CLOs), which together make up collateralized debt 
obligations (CDOs), are among the newest developments in 

securitization. The instruments are generally held to have originated in the 
repackaging of high-yield debt or loans into higher-rated bonds that began 
in the late 1980s. Today many types of CDOs exist, and the market has 
expanded from the United States into Europe and Asia. 

Both CBOs and CLOs are securities issued against an underlying col-
lateral of assets. These assets almost invariably are diverse corporate bonds 
or loans or both. CBOs are backed by corporate or sovereign bonds; 
CLOs, by secured and/or unsecured corporate and commercial bank 
loans. There are two types of CDOs: arbitrage and balance sheet. Some 
analysts also recognize a third category: emerging market CDOs, which are 
CDOs securitized from a portfolio of emerging market bonds (or loans). 

A typical CDO structure involves the transfer of the credit risk associ-
ated with an underlying asset pool from the originating institution to a 
special purpose vehicle, or SPV, created specifi cally to make this transfer 
possible. The SPV—typically bankruptcy remote and isolated from the 
originator’s credit risk, often in a tax haven—then transfers the risk to in-
vestors by issuing CDO notes. The return to investors in the issued notes 
depends on the performance of the underlying asset pool. The manager, 
who is responsible for managing the portfolio of underlying assets and 
bonds, would be expected to manage the portfolio after the CDO trans-
action is brought to market. As the bonds in the underlying portfolio 
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might need to be hedged (to remove risk exposure arising from issuing a 
series of notes that have different interest pay dates and also possibly dif-
ferent currencies), an interest rate and currency swap is entered into with 
a hedge counterparty. 

Among institutions’ objectives in originating CDO transactions are 
the following: 

❑ Optimizing their returns on regulatory capital, by reducing 
the need for capital to support assets on the balance sheet. Regulatory 
capital is the capital needed to be put up by a fi nancial institution in 
accordance with the “Basel” rules, issued by the Bank for International 
Settlement.

❑ Improving their returns on economic capital, the actual capital 
used by the bank to support its operations, by managing risk effectively

❑  Managing their credit risk and balance sheets
❑  Issuing securities as a means of funding
❑  Gaining funding for acquiring assets
❑  Increasing funds under management

FIGURE 15.1 shows a typical conventional CDO structure.
As noted above, CLOs are backed by pools of bank loans and CBOs 

by portfolios of bonds. The two types of underlying assets differ in ways 
that affect the analyses of the securities they collateralize. Among the 
differences are the following: 

❑ Loans have less uniform terms than bonds, varying widely in 
their interest dates, amortization schedules, reference indexes, reset dates, 
maturities, and so on. How their terms are defi ned affects the analysis of 
cash fl ows. 

❑ In part because of this lack of uniformity, the legal documentation 
for loans is less standardized than that for bonds. Securities backed by 
loans, therefore, require more in-depth legal review.

FIGURE 15.1  A Typical Conventional CDO Structure
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❑ It is often possible to restructure a loan portfolio to refl ect the 
changed or changing status of the borrowers—for example, their ability to 
service the debt. This provides participants in a CLO with more fl exibility 
than they usually have with a CBO.

❑ The market in bank loans is far less liquid than that in bonds, 
which has the effect of making overlying notes sometimes less liquid in the 
secondary market for CLOs.

CDO Structures
CDO structures may be either conventional or synthetic. The conven-
tional structures were the fi rst to be widely used, but synthetic ones 
have become increasingly common since the late 1990s. The difference 
between the two structures lies in how they transfer credit risk from the 
originator to the SPV: in conventional CDO structures, this is achieved 
by transferring assets; in synthetic structures, credit derivative instru-
ments are used. 

CDOs of both types are also categorized by the motivation behind 
their creation. The two main categories are issuer- or balance sheet–driven 
transactions and investor-driven or market value arbitrage transactions. 

Conventional CDO Structures
In a conventional structure, such as the one illustrated in FIGURE 15.2, 
the creation of an SPV usually involves the transfer from the originator 
of a nominal amount of equity. The main funding comes from issuing 
CDO notes. The proceeds from the issuance are used to acquire the 
pool of underlying assets (bonds or loans) from the originator in what 
is known as a true sale. If performed and structured properly, this asset 
transfer removes assets from the regulatory balance sheet of a bank origi-
nator. As a result, the securitized assets are not included in the calcula-
tion of the bank’s capital ratios. This provides regulatory capital relief, 
which is the main motivation for many of the CDO transactions in the 
market today.

Because the SPV now owns the assets, it has an asset-and-liability 
profi le that must be managed during the term of the CDO. The typical 
liability structure includes a senior tranche rated Aaa/Aa, a junior tranche 
rated Ba, and an unrated equity tranche. The equity tranche is the riskiest, 
since it is the fi rst to absorb any losses in the underlying portfolio. For this 
reason, it is often referred to as the fi rst-loss tranche. 

In the case of a CLO, the originating bank commonly continues to 
service the underlying loan portfolio and retains the equity tranche. 

This is done for the following reasons:
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❑  The bank has detailed information on the loans that enables it to 
manage effectively the risk it retains.

❑  Having a fi nancial interest in the performance of the loan portfo-
lio, the bank remains motivated to service it.

❑  The return required by a potential purchaser of the equity tranche 
may be too high.

Structuring a conventional CDO may give rise to signifi cant issues. 
For instance, the transfer of assets into the SPV may have adverse tax, 
legal, and regulatory impacts, depending on the jurisdiction in which the 
transfer of assets takes place and the details of the legislation pertaining 
to that jurisdiction. Another issue is reinvestment risk: in a conventional 
CDO, the originator receives cash, and if the main objective of the trans-
action is to transfer credit risk or to acquire protection for credit risk, this 
cash must be reinvested in other assets.

The multitranche structure, with its prioritization of cash fl ow pay-
ments to investors, provides the CDO with a credit enhancement. To 
enhance the credit of the senior notes, the originating bank may also use 
other mechanisms, such as credit insurance on the underlying portfolio, 
known as a credit wrap, and reserve accounts that absorb a loss before the 
equity tranche. 

FIGURE 15.2  Conventional CDO Structure
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Synthetic CDO Structures
As with conventional CDOs, the main motivation for issuing synthetic 
CDOs is the desire to hedge or transfer credit risk, in order to achieve 
regulatory-capital relief or to obtain credit protection on an underly-
ing asset pool. In a synthetic CDO structure, such as that illustrated 
in FIGURE 15.3, the reference pool of assets remains on the originator’s 
balance sheet. In place of an asset transfer, the originator enters into a 
credit-default swap with the SPV that covers any losses in the underlying 
asset pool. This transfers the credit risk of the asset portfolio to the SPV. 
If its regulatory authority recognizes the credit-risk offset, this allows the 
bank to release regulatory and economic capital. In return for the credit 
protection, the originator bank pays the SPV a premium, typically in the 
form of a regular fee. 

Notes issued in synthetic structures are organized by tranche. With the 
proceeds from the notes it issues to investors, the SPV purchases high-quality 
(AAA) liquid securities—for example, U.S. Treasuries, bank asset-backed 
paper such as credit card ABS, and German bonds, such as Pfandbriefe
—to serve as collateral. This collateral will generate LIBOR-related interest 
and principal cash fl ows that the SPV passes on to the investors together 
with the swap premium, which creates an additional credit spread on the 
notes. The cash fl ows from the collateral may not match the payments 
due on the issued notes—for example, the bonds used as collateral may 
pay a fi xed rate and the issued notes a fl oating one. To remedy this, the 

FIGURE 15.3  A Synthetic CDO Structure
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SPV usually enters into an interest rate swap. The swap counterparty may 
also sell the SPV other derivative instruments, such as interest rate caps, to 
manage possible cash fl ow risk. Such risk-exposure management requires 
careful attention, since the SPV’s risk profi le can have a signifi cant impact 
on the credit risk of the notes issued to investors. In an unleveraged trans-
action, the size of the issue is equivalent to the credit protection the SPV 
offers on the reference pool of assets. For example, if the credit default 
swap is on a nominal of $300,000, the nominal value of the notes issued 
will be $300,000. 

The notes issued to investors are linked to the credit risk of the port-
folio through the credit-default swap—which usually has the same term 
to maturity as the notes—and to the credit derivative counterparty. The 
notes are therefore credit linked.

The payout from the credit-default swap is triggered by a credit event. 
The precise defi nition of credit event is important, since it may affect the 
notes’ returns. It usually includes bankruptcy and failure to pay off the 
underlying credit. In a failure to pay, a grace period may be specifi ed, so 
that default is not triggered if the payment is delayed for technical rea-
sons, such as information technology issues. The International Swaps and 
Derivatives Association’s defi nitions for a credit derivative transaction 
refer to restructuring, as a credit event. Its inclusion in the credit defi ni-
tions of default swaps in synthetic CDO transactions depends on whether 
it would affect the regulatory-capital-relief treatment of the underlying 
asset pool. Restructuring refers to the process when the loan liabilities of a 
borrower are restructured, in terms set by its lenders, in times of fi nancial 
diffi culty. 

If a credit event occurs, the SPV usually pays out a cash amount equal 
to the par value of the underlying assets covered by the credit default swap, 
less their post-default price. Less commonly, the SPV physically settles the 
credit-default swap by purchasing the defaulted assets at par value. The 
credit loss is then passed on to the investors according to the priority of 
the tranches they hold.

Motivation Behind CDO Issuance
Different types of institutions have different motives for originating 
CDO transactions. The main ones are to optimize regulatory capital, to 
obtain funding, to engage in arbitrage, or, on occasion, a combination 
of all three.
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Balance Sheet–Driven Transactions
In a balance sheet–driven CDO the originating bank is trying to obtain 
off–balance-sheet treatment for existing assets to which bank capital has 
been allocated. This enables the originator to manage capital constraints 
and to improve its return on capital.

The originators in these situations are mainly commercial banks. The 
underlying asset pool may include commercial loans, both secured and 
unsecured, guarantees, and revolving credits. Although there is usually no 
intention to trade these assets, the pool may be subject to substitutions or 
replenishments over the life of the structure. The originating bank usually 
acts as investment adviser with respect to such changes, to maintain the 
underlying asset pool’s quality and protect the note holders. In this regard, 
the rating agencies often require that the average credit quality of the asset 
pool be maintained.

Investor-Driven Arbitrage Transactions
In a CDO whose purpose is arbitrage, the underlying asset pool includes 
not only instruments that generate investment income but also some that 
provide the opportunity to generate value from active trading. The lat-
ter may be existing positions or may be acquired expressly for the CDO. 
The potential for trading profi ts depends on the quality and expertise of 
the CDO manager, who is usually the investment adviser. The aim is to 
profi t from the spread between the investment- and subinvestment-grade 
markets. CDOs allow lower-rated debt to be repackaged as higher-rated 
notes, exploiting the fact that spreads between the two grades of debt are 
often greater than justifi ed by the credit difference. The originator thus 
earns more on the risky debt than it pays to securitize it and to enhance 
its credit rating.

The profi tability of an arbitrage-driven CDO depends on such factors 
as the following:

❑  the return required by the holders of the issued tranches
❑  the return of the underlying asset pool 
❑  the expenses of managing the SPV

If the underlying portfolio performs well and its loss profi le is more at-
tractive than projected, because of better-than-expected default and recov-
ery rates, the return to the equity holder after payments to the senior and 
junior tranche will be higher than expected. If, however, the underlying 
portfolio performs poorly and default and recovery rates are worse than 
projected, perhaps because of adverse economic conditions, the tranche 
returns will be lower than expected. Poor investment management will 
also have an adverse impact on the return to investors.



286                               Selected Cash and Derivative Instruments

Fund managers create arbitrage CDOs from pools of high-yield bonds 
since this enables them to increase the size of their assets under manage-
ment with comparatively small levels of equity. Their objective is to set 
up the CDO so that the return generated by the underlying pool of high-
yield bonds is suffi cient to pay off investors and provide them with a profi t 
on the equity tranche on top of their management fee. 

Analysis and Evaluation
A number of factors are important to consider when analyzing, evaluating, 
or rating a CDO. The basic ones are discussed in this section.

Portfolio Characteristics
The credit quality of the underlying asset pool is critical, since it determines 
the structure’s credit rating. It is common to allocate an average rating to the 
initial reference pool. A constraint in structuring the transaction may be that 
any permitted changes to the pool should not lower the average rating. The 
portfolio’s credit quality and its possible variability are used to project the 
pool’s default frequency and loss rates. In some cases, the bank’s own system 
for determining the credit risk of borrowers is a key part of the rating pro-
cess. Particularly for unrated assets, investors should determine the internal 
rating system’s accuracy by mapping it onto the rating agency’s system. 

The diversity of the reference pool plays a part in determining its credit 
risk. Diversity is measured in terms of the portfolio’s concentration by in-
dustry group, obligor, and sovereign country. Broadly speaking, the greater 
the diversifi cation, the lower the credit risk. A portfolio is assigned a diver-
sity score based on its weighted average credit score. Each incremental credit 
exposure in the underlying asset pool gets a marginal score determined by 
the makeup of the entire credit portfolio. If the portfolio is concentrated 
in one category—say, an industry group—the marginal score attributed to 
the marginal credit is reduced to refl ect the lack of diversity. As a result, an 
asset pool with a wide range of credit exposures has a higher diversity score. 
Change in the underlying asset pool may be constrained by a requirement 
that a minimum diversity score be maintained for the life of the CDO. 

Cash Flow Analysis and Stress Testing
The cash fl ow profi le of a CDO depends on the following issues:

❑ The spread between the interest earned on the collateral and the 
coupon paid on the securities issued

❑ The frequency of defaults in the underlying asset pool and their 
severity, in terms of recovery rate, plus the impact of losses on investors’ 
principal
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❑ The principal-repayment profi le and expected amortization of the 
underlying loans 

❑ The contingent payments under any credit-default swap used to 
transfer credit risk from the originator to another party, such as the SPV or an 
OECD bank. Under Basel I rules, if an investor takes out credit protection on 
a loan, and the protection is provided by a OECD bank, his capital charge 
changes from 100 percent to 20 percent.

❑ The contingent cash fl ows from any credit wrap or credit insurance 
on the underlying asset pool

❑ The cash fl ows receivable from or payable to a hedge counterparty 
under swap agreements or derivative contracts

❑  The premium received from the credit default swap counterparty
❑  Fees and expenses

The cash fl ows are tested to see how they are affected in both normal 
and stressed scenarios. The types of stress scenarios tested depend on the 
underlying asset pool.

Originator’s Credit Quality
The impact of the originator’s credit quality on the rating of the notes is-
sued depends on the CDO structure. In a conventional structure, where 
the underlying assets are transferred from the originator to the SPV, the 
credit quality of the CDO notes is “delinked” from that of the originator, 
depending solely on the portfolio performance and the credit enhance-
ment. In a synthetic structure, in contrast, the underlying asset pool 
remains on the originator’s balance sheet. Investors, therefore, may be 
exposed to both the originating bank’s credit quality and the portfolio 
performance. The rating of such a credit-linked CDO is capped by that 
of the originator, whose fi scal soundness determines the reliability of the 
interest and principal payments. 

The senior tranches of a synthetic CDO, however, may be delinked 
from the bank’s rating by using AAA-rated collateral and default swaps, as 
described above. The fi nal rating is infl uenced by the credit rating of the 
default-swap provider and the extent to which the cash fl ows to investors 
are exposed to the risk of default by the asset pool. 
 
Operational Aspects
In market value transactions, the portfolio manager’s ability is key, since 
the performance of the underlying portfolio is critical to the structure’s 
success. The originator’s procedure for reviewing credit approvals of the 
borrowers of the underlying loans and monitoring the loans is another 
factor to consider. The better the credit-assessment and monitoring proce-
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dure, the more comfortable investors can be with the integrity and quality 
of the underlying asset portfolio.

Review of Credit-Enhancement Mechanisms
Credit enhancements include reserve accounts, subordinated tranches, 
credit wraps, and liquidity facilities. Investors should consider the im-
pact of the particular enhancements a structure uses. This will usually be 
observed by subjecting the CDO to stress scenarios that are designed to 
determine the effect on the cash fl ows. 

Subordination. Each tranche’s rights to and priority in receiving 
interest and principal payments are set out in an issue’s offering circular, 
which provides a detailed description of the notes and their legal structure. 
In allocating cash fl ows, typically, fees and expenses are subtracted from 
the cash fl ows, then the most senior tranches are serviced, followed by the 
junior tranches, and fi nally the equity tranche. This method of cash fl ow 
is sometimes referred to as a cash fl ow waterfall. 

Credit wrap. As explained above, the originating bank may buy credit 
insurance on the debt instruments of the underlying portfolio, to improve 
its credit quality.

Reserve accounts. The banks may also set aside cash reserves from 
the note proceeds in accounts, usually managed by the servicing agent or 
a specialized cash manager, which provide fi rst-loss protection to investors 
by absorbing losses before the equity tranche. 

Liquidity facility. A facility is an arrangement to provide a borrower 
with credit support. In the case of a CDO, this arrangement involves the 
originating bank ensuring that, should the underlying asset pool experi-
ence a temporary cash shortfall, the notes’ interest and principal payments 
will still be made.

Legal Structure of the Transaction
A typical CDO structure is described in several legal agreements that 
formalize the roles played by the various counterparties to the deal. In 
addition to the offering circular, which presents the transaction details to 
investors, these documents include the following:

❑  The trustee agreements, which set out the responsibilities for ad-
ministration and maintenance of books and records

❑  The sale agreement or credit-default swap agreement used to trans-
fer credit risk

❑  The hedging agreements, such as interest rate or cross-currency 
swaps and other derivative contracts

❑  Guarantees or insurance, such as credit wraps on the underlying 
asset pool
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Before the deal is closed, the SPV’s incorporation documents are also 
reviewed, to ensure that it is bankruptcy remote and established in a tax-
neutral jurisdiction. 

Expected Loss
Rating a CDO involves a detailed analysis of its structure, including the 
elements discussed above. It also encompasses a quantitative assessment. 
This is often based on the expected loss (EL) to note holders. The expected 
loss calculated for each tranche is mapped to a table of expected losses and 
their corresponding rating to assign the tranche an appropriate rating. The 
tranche’s credit rating is a key determinant in its pricing and marketability. 
Expected loss is calculated using equation (15.1).

 EL p Lx x
x

= ( )∑  (15.1)

where
Lx = the loss on the notes under scenario x
px = the probability of the scenario x occurring
 
Note holders’ expected losses are determined by considering the im-

pact on their cash fl ows of the credit losses—losses from loan defaults—
occurring in various scenarios, taking into account how such losses are 
allocated to the issue’s tranches. The cash fl ows to the note holders depend 
on whether a default has occurred and the size of the resulting loss. The 
severity of the loss equals the par value of the note less the recovery rate. 
The probability of default may be inferred from the rating of the under-
lying credit exposures. Expected losses are calculated using Monte Carlo 
techniques, which simulate thousands of scenarios and cash fl ows and so 
require sophisticated computational models.
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Part Three presents the author’s insights into trading, based on 

his experiences working as a gilt-edged market maker and ster-

ling-bond proprietary trader. The topics covered include implied 

spot and market zero-coupon yields, yield-curve spread trading, 

and butterfl y spreads. 
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C H A P T E R  1 6

The Yield Curve, Bond Yield, 
and Spot Rates

This chapter examines a number of issues relevant to participants 
in the fi xed-income markets. The analysis presented is based on 
government-bond trading and is confi ned to generic bonds that 

are default-free, with no consideration given to factors that apply to cor-
porate bonds, asset- and mortgage-backed bonds, convertibles, or other 
nonvanilla securities, or to issues such as credit risk and prepayment risk. 
Nevertheless, the principles adduced are pertinent to all relative-value 
fi xed-income analysis.

Practical Uses of Redemption 
Yield and Duration

The drawbacks of duration and gross redemption yield (henceforth re-
ferred to simply as yield ) for bond analysis are well documented. That 
different bonds, even vanilla government securities, can have their yields 
analyzed in a number of ways suggests, moreover, that acceptable return 
measures are lacking. When assessing the opportunities available in a mar-
ket, investors often use that market’s yield convention. The resulting mul-
tiplicity of yield-calculation methods—illustrated in FIGURE 16.1—makes 
bond comparisons problematic. Duration is another measure that can be 
defi ned in more than one way, again making comparison between differ-
ent bonds diffi cult. This section discusses ways to mitigate the problems 
inherent in using yield and duration and how using analyses based on 
these methods should proceed.   
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The Concept of Yield
Ideally, an instrument’s yield indicates what return an investor can achieve 
by holding it. Such an ideal measure would be a function of the value of 
the initial investment, the holding period, and the value of the matured in-
vestment. It would also take into account any reinvestment of the income 
received during the holding period—that is, the effect of compounding. 
A yield measure having these properties may be defi ned as follows for a 
simple instrument such as a Treasury bill.

Consider a T-bill with a term of m days and a price of P. Equation 
(16.1) may be rearranged to compute the bill’s true yield, rm. 

 P
rm

n=
+( )

100

1 1
2

 
 (16.1)

where 
n = the number of interest periods from value date until maturity 

The U.S. Treasury interest basis is semiannual, and the market uses 
an actual/actual day count. So, the value of n for the 90-day T-bill 
whose yield analysis as of March 25, 2004, is shown in fi gure 16.1 
would be 90/183, where 183 represents the number of days in half a 
year, given that 2004, as a leap year, had 366 days. The bill was priced 
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FIGURE 16.1  Bloomberg YA Screen Showing Alternative Yield 
Calculations for a U.S. Treasury 
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at 99.7725, so its true yield is given by equation (16.2).

 99 7725
100

1 1
2

90 183. /=
+( )rm

 (16.2)

 rm = 0.927 percent
 
The yields quoted on T-bills often differ from their true yields. This 

is because their yield calculations often assume simple rather than com-
pound interest. Nevertheless, true yield is important for its application to 
longer-dated coupon bonds. 

Yield has been defi ned in previous chapters as the discount rate that 
equates the sum of the present values of all a bond’s cash fl ows to its ob-
served market price. A vanilla bond, such as a U.S. Treasury, has m future 
cash fl ows—the coupon payments—each having a value C, equal to one-
half the coupon rate applied to the face value. Cm is the principal payment. 
The sum total of the bond’s discounted cash fl ows is given by equation 
(16.3).
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where
Ci = the i th bond payment 
Cm = the coupon payment plus the principal repayment 
mi = the number of days from the value date to maturity 
ni = the number of interest periods from the value date until Ci = mi /

182 or 183
r = the discount rate 

From this it is easy to derive the defi nition of true yield, which is the 
discount rate that equates a bond’s current market price to the present 
value of its cash fl ows. The bond’s market price is its dirty price—that is, 
the price including accrued interest. This is represented in (16.4), where 
PV is replaced by P, representing the clean price plus AI, representing 
accrued interest.
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Yield Comparisons in the Market
U.S. Treasury price quotes are in ticks, or thirty-seconds of a price point. 
A half tick is denoted by a plus sign. On May 10, 1994, the 10.25 per-
cent Treasury bond maturing July 21, 1995, was quoted at 104-28+—
in other words, an investor would pay $104.28625 for every $100 in 
face value. It pays coupons on January 21 and July 21. On May 11, 
1994, the settlement date, it will have accrued 109 days of interest, for a 
total of 10.25 × 109/365 × 0.5, or 1.53048 for every $100 of face value. 
The dirty price of the bond on this date is thus 104-28+ plus 1.53048, 
or 106.421105.

The remaining bond cash fl ows are $5.125, on both July 21, 1994, 
and January 21, 1995, and $105.25, on July 21, 1995. January 21, 1995, 
however, is a Saturday, so the cash fl ow will not actually be received until 
Monday, January 23. The number of days between the value date, May 
11, 1994, and the receipt of each cash fl ow is 

July 21, 1994 71 days
January 23, 1995 230 days
July 21, 1995 436 days

The interest periods between each cash fl ow date and the value date 
number are

(71/183) or 0.387978
(230/183) or 1.256830
(436/183) or 2.382513

Plugging the derived values for price, accrued interest, cash fl ows, and 
interest periods into (16.4) gives

106 421105
5 125

1

5 125

1

105
1
2

0 387978 1
2

1 256830.
. .

. .=
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+
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+
rm rm

..
.
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1 1
2

2 38251
+( )rm  

 

which can be rearranged to solve for rm = 0.073894, or 7.3894 per-
cent.

The conventional yield—the one usually quoted—is almost invari-
ably different from the true yield. This is because the conventional cal-
culation derives the number of interest periods between the value date 
and the cash fl ows based on exact half-year intervals between payments, 
ignoring the delays that occur when the payment dates fall on nonbusi-
ness days. 
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Measuring a Bond’s True Return 
The true yield measure derived in the previous section is not as straight-
forward as the one given earlier for the T-bill. Because a T-bill has only a 
single cash fl ow, its maturity value is known, so its return is easily calculat-
ed as its increase in value from start to maturity. Investors know that mon-
ey put into a 90-day T-bill with a yield of 5 percent will have grown by 
5 percent, compounded semiannually, at the end of three months. No such 
certainty is possible with coupon-bearing bonds. Consider: although the 
investors in the 90-day T-bill are assured of a 5 percent yield after ninety 
days, they don’t know what their investment will be worth after, say, sixty 
days or at what yield they will be able to reinvest their money when the bill 
matures. Such uncertainties don’t effect the return of the short-term bill, 
but they have a critical impact on the return of coupon bonds. 

It would certainly help investors if they could analyze bonds as though 
they had single cash fl ows. Investors often buy bonds against liabilities that 
they must discharge on known future dates. It would be a comfort if they 
could be sure the bonds’ returns would meet their liability requirements. 
Put very simply, this is the concept of immunization. 

The diffi culty in calculating a bond’s return is that its future value is 
not known with certainty, because it depends on the rates at which the 
interim cash fl ows can be reinvested, and these rates cannot be predicted. 
A number of approaches have been proposed that get around this. These 
are described in the following paragraphs, assuming simple interest rate 
environments.

The simplest approach assumes, somewhat unrealistically, that the 
yield curve is fl at and moves only in parallel shifts, up or down. It con-
siders a bond to be a package of zero-coupon securities whose values are 
discounted and added together to give its theoretical price. The advantage 
of this approach is that each cash fl ow is discounted at the interest rate for 
the relevant term, rather than at a single “internal rate of return,” as in the 
conventional approach. Given the fl at yield curve, however, this approach 
reduces to (16.3). An example of its application is on the following page.

A bond’s return is infl uenced by changes in the yield curve that occur 
after its purchase. Say the yield curve moves in a parallel shift to a new level, 
rm2. In that case, the expected future value of the bond changes. Assuming 
s interest periods from the value date to a specifi ed “horizon date,” the new 
value of the bond on that horizon date is given by equation (16.5).
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The equation expresses the fact that the Cm–i cash fl ow contributes
C
rm

i
n si1 1

2 2+ ) −  to the bond’s value on this future horizon date. If this cash 
fl ow is received ahead of the horizon date, n si −  is a negative exponent, 
meaning that Ci is compounded (rather than discounted) forward to the 
horizon date at the rate rm2. If the cash fl ow is received after the horizon 
date, n si −  is positive, and Ci is discounted back to the horizon date at 
the same rate. 

If s is small, a majority of the bond’s cash fl ows take place after the 
horizon date, and a shift up in the yield curve—that is, rm2 > rm—
produces a lower future value, P rm s2,( ), because most of the fl ows must 
be discounted at the higher rate. If s is large, so that most of the cash fl ows 
take place before the horizon date, an upward shift increases the value of 
these cash fl ows, because they can be reinvested at a higher rate of inter-
est. When s is suffi ciently large, this reinvestment gain matches, and may 

EXAMPLE: Conventional Bond Pricing

Given a value date of December 8, 2000, value a hypotheti-
cal bond paying a 5 percent semiannual coupon and maturing 
December 8, 2002. 

On the value date, the bond has precisely four interest periods 
to maturity and no accrued interest. Its cash fl ows are 2.50, 2.50, 
2.50, and 102.50. Assuming that the yield curve on December 7 
is fl at at 5 percent, its price is calculated as follows:
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So, at a uniform—because of the fl at curve—discount rate of 
5 percent, the price of the bond is par.
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even exceed, the loss suffered through revaluation of the discounting at the 
higher rate, resulting in a higher future value, P rm s2,( ). The reverse occurs 
if rm rm2 < . These changes in future value represent the reinvestment risk 
borne by the bondholder. 

Between the short- and long-term horizon dates is one at which the 
net effect of the change in reinvestment rate on the bond’s future value 
is close to zero. At this date, the bond behaves like a single-cash-fl ow or 
zero-coupon security, and its future value can be predicted with greater 
certainty, no matter what the yield curve does after its purchase. Defi n-
ing this date as sH interest periods after the purchase date and PH as the 
value of the bond at that point, it can be shown that the bond’s rate of 
return up to this horizon date is the value for rmH that solves equation 
(16.6). 
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2  (16.6)

The left side of equation (16.6) is the bond’s market price broken 
into clean price plus accrued interest, as it was in (16.4). In fact, it can be 
shown that rmH is identical to the initial yield in (16.4), rm. The value of 
sH that results in a stable future bond value is the Macaulay duration. At 
this point, assuming the existence of only one, parallel yield shift, a change 
in yield will not impact the future value of the bond. The bond’s cash fl ows 
are immunized, and the instrument can be used to match a liability exist-
ing on that date.

Because of the analysis’s assumed restrictions, however, investors apply-
ing it must continually adjust their portfolios if they wish to remain im-
munized. Fabozzi (1996) contains a very accessible discussion of the key 
issues involved in dynamically managing a portfolio. A number of other 
considerations also limit the use of duration in portfolio management. 
For instance, as Blake (1990) 5.8.1 points out, most Treasury bonds have 
durations of less than twelve years. This makes portfolio immunization 
diffi cult when liabilities are very long dated. 

Zero-coupon bonds don’t pose these problems, because their durations 
are identical to their terms to maturity. This potentially increases their at-
tractiveness as investments. A fi ve-year zero-coupon bond has a duration 
of fi ve years when purchased; after two years, its duration is three years, no 
matter what interest rates have done. A long-dated zero-coupon bond can 
thus be safely used to match a long-dated liability.
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Implied Spot Rates and 
Market Zero-Coupon Yields

The yield analysis described above considers coupon bonds as packages 
of zeros. How does one compare the yields of zero-coupon and coupon 
bonds? A two-year zero is clearly the point of comparison for a coupon 
bond whose duration is two years. What about very long-dated zero-
coupon bonds, though, for which no equivalent coupon Treasury is usu-
ally available? The solution lies in the technique of stripping coupon 
Treasuries, which allows implied zero-coupon rates to be calculated, which 
can be compared with actual strip-market yields.

This section describes the relationships among spot interest rates and 
the actual market yields on zero-coupon and coupon bonds. It explains 
how an implied spot-rate curve can be derived from the redemption yields 
and prices observed on coupon bonds, and discusses how this curve may 
be used to compare bond yields. Note that, in contrast with the common 
practice, spot rates here refer only to rates derived from coupon-bond 
prices and are distinguished from zero-coupon rates, which denote rates 
actually observed on zero-coupon bonds trading in the market. 

Spot Yields and Coupon-Bond Prices
As noted in chapter 2, a Treasury bond can be seen as a bundle of individual 
zero-coupon securities, each maturing on one of the bond’s cash fl ow pay-
ment dates. In this view, the Treasury’s price is the sum of the present values 
of all the constituent zero-coupon bond yields. Assume that the spot rates 
for the relevant maturities— r r r rN1 2 3, , ,.... —can be observed. If a bond pays 
a semiannual coupon computed at an annual rate of C from period 1 to 
period N, its present value can be derived using equation (16.7).
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Equation (16.7) differs from the conventional redemption yield for-
mula in that every cash fl ow is discounted, not by a single rate, but by the 
zero-coupon rate corresponding to the maturity period of the cash fl ow. 
To apply this equation, the zero-coupon-rate term structure must be 
known. These rates, however, are not always readily observable. Treasury 
prices, on the other hand, are and can be used to derive implied spot in-
terest rates. (Although in the market the terms are used interchangeably, 
from this point on, zero coupon will be used only of observable rates and 
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spot only of derived ones.) To see how the derivation works, consider the 
ten hypothetical U.S. Treasuries whose maturities, prices, and yields are 
shown in FIGURE 16.2. Assume that the yield curve is positive and that the 
securities’ settlement date—March 1, 1999—is a coupon date, so none of 
them has accrued interest. 

The fi rst bond matures in precisely six months and thus has no inter-
mediate cash fl ow before redemption. It can therefore be treated as a zero-
coupon bond, and its yield of 6 percent taken as the 6-month spot rate. 
Using this, the 1-year spot rate can be derived from the price of a 1-year 
coupon Treasury. The principle of no-arbitrage pricing requires that the 
price of a 1-year Treasury strip equal the sum of the present value of the 
coupon Treasury’s two cash fl ows:

September 1, 1999 $5
March 1, 2000 $5 + $100 = $105

The combined present values of these cash fl ows is given by equation 
(16.8).

FIGURE 16.2   Ten Hypothetical Treasuries

   MATURITY YEARS TO COUPON YIELD TO
   DATE MATURITY (%) MATURITY PRICE

1-Sep-99 0.5 5.0 6.00 99.5146

1-Mar-00 1.0 10.0 6.30 103.5322

1-Sep-00 1.5 7.0 6.40 100.8453

1-Mar-01 2.0 6.5 6.70 99.6314

1-Sep-01 2.5 8.0 6.90 102.4868

1-Mar-02 3.0 10.5 7.30 108.4838

1-Sep-02 3.5 9.0 7.60 104.2327

1-Mar-03 4.0 7.3 7.80 98.1408

1-Sep-03 4.5 7.5 7.95 98.3251

1-Mar-04 5.0 8.0 8.00 100.0000
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where 
r1 = one-half of the 6-month theoretical spot rate
r2 = one-half of the 1-year theoretical spot rate

Plugging in the 6-month spot rate of 6 percent, divided by two, and 
the 1-year Treasury’s observed market price, 103.5322, gives equation 
(16.9), which can be solved for r2 as shown.
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 98.67783 = 105 / (1 + r2)2

 (1 + r2)2 = 105 / 98.67783

 (1 + r2)2 = 1.064069

 (1 + r2) = 1 064069.

 r2 = 0.03154

The theoretical 1-year spot rate is twice r2, or 0.06308, for an an-
nualized bond-equivalent yield of 6.308 percent. This fi gure can now be 
used to calculate the theoretical 1.5-year spot rate. The cash fl ows for the 
7 percent 1.5-year coupon Treasury are

September 1, 1999 $3.50
March 1, 2000 $3.50
September 1, 2000 $103.50

The present value of this cash fl ow stream is 

 PV
r r r

Sep00
1 2

2
3

3
3 50
1

3 50

1

103 50

1
=

+( )
+

+( )
+

+( )
. . .

where 
r3 = one-half the 1.5-year theoretical spot rate 

Plugging in one-half the 6-month and 1-year spot rates—0.03 and 
0.03154, respectively—and the price of the 7 percent 1.5-year coupon 
Treasury gives equation (16.10), which can be solved for r3.
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 r3 = 0.032035

This value doubled—6.407 percent—is the 1.5-year theoretical spot 
rate. 

Repeating this process for all the Treasuries in fi gure 16.2 results in the 
implied spot rates shown in FIGURE 16.3. 

The general relationship used to derive an implied spot rate for the 
Nth 6-month period, given earlier as 16.7, is repeated here, as (16.11), 
without the C subscripts. This can be rewritten as (16.12).
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FIGURE 16.3   Bootstrapping Zero-Coupon Yields

   MATURITY YEARS TO YIELD TO THEORETICAL
   DATE MATURITY MATURITY (%) SPOT RATE (%)

1-Sep-99 0.5 6.00 6.000

1-Mar-00 1.0 6.30 6.308

1-Sep-00 1.5 6.40 6.407

1-Mar-01 2.0 6.70 6.720

1-Sep-01 2.5 6.90 6.936

1-Mar-02 3.0 7.30 7.394

1-Sep-02 3.5 7.60 7.712

1-Mar-03 4.0 7.80 7.908

1-Sep-03 4.5 7.95 8.069

1-Mar-04 5.0 8.00 8.147
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where
rt = the already calculated theoretical spot rates r1, r2, ... , rN –1

Equation (16.12) can be rearranged as (16.13), to solve for rN.
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Implied Spot Yields and 
Zero-Coupon Bond Yields

Spot yields cannot be directly observed in the market. They can, however, 
be computed from the observed prices of zero-coupon bonds, or strips, if 
a liquid market exists in these securities. An implied spot yield curve can 
also, as the previous section showed, be derived from coupon bonds’ prices 
and redemption yields. This section explores how the implied and actual 
strip yields relate to each other. 

A spot rate may be thought of as the rate of return at purchase of a single-
cash-fl ow security held to maturity. Alternatively, as the previous sections 
have shown, it can be viewed as the rate payable on a coupon bond whose 
yield is analyzed as a complex average of the spot yields of the individual 
zero-coupon cash fl ows into which the bond may be decomposed. Zero-
coupon securities, in contrast, are actual market instruments that have been 
created, as explained in Choudhry (1999), by stripping individual cash fl ows 
from coupon bonds and trading the resulting cash fl ows separately. Those 
consisting of principal-redemption or residual cash fl ows are termed princi-
pal strips; the other cash fl ows are used to form coupon strips. The yields on 
these strips refl ect market supply and demand. Zero-coupon yields and spot 
yields, although identical in theory, are thus different in practice.

Because it is affected by current demand, the yield of a particular zero-
coupon bond at any time may differ from the equivalent-maturity spot 
yield. When investors value an individual zero-coupon bond less highly 
as a stripped security than as part of a coupon bond’s theoretical package 
of zero-coupon cash fl ows, the strip’s yield will be above the spot rate for 
the same maturity. The opposite happens when investors prefer to hold the 
zero-coupon security. 

Despite their supply-and-demand-induced divergence from zero-
coupon rates, implied spot rates are important because they enable inves-
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tors to assess relative value for both zero-coupon and coupon bonds. Con-
sider FIGURES 16.4 and 16.5, a table and graph of the implied spot yields 
derived from U.K. government gilt prices on March 2, 1999, together 
with the coupon- and principal-strip yields for the same date. (The graph 

FIGURE 16.4   Gilt Market Gross Redemption True Yields and 
Implied Spot Yields on March 2, 1999

  TRUE SPOT COUPON PRINCIPAL
  TERM GILT YIELD YIELDS  STRIP YIELD STRIP YIELD

0.5  6% 10/8/1999 5.033 5.033 5.068 

1.5 * 8% 7/12/2000 5.027 4.977 4.973 5.036

2.5  7% 6/11/2001 4.963 4.927 4.949 

3 * 7% 7/6/2002 4.878 4.836 4.91 4.867

4  8% 10/6/2003 4.845 4.789 4.824 

4.5 * 6.50% 7/12/2003 4.735 4.687 4.786 4.691

5  6.75% 26/11/2004 4.709 4.658 4.798 

6 * 8.50% 7/12/2005 4.78 4.728 4.774 4.74

7 * 7.50% 7/12/2006 4.8 4.77 4.781 4.775

8 * 7.25% 7/12/2007 4.759 4.721 4.753 4.723

9  9% 13/10/2008 4.72 4.644 4.735 

10 * 5.75% 7/12/2009 4.604 4.542 4.723 4.518

11  6.25% 25/11/2010 4.695 4.665 4.711 

12  9% 12/7/2011 4.751 4.721 4.713 

13  9% 6/8/2012 4.787 4.727 4.713 

14  8% 27/9/2013 4.763 4.75 4.71 

16 * 8% 7/12/2015 4.711 4.659 4.705 4.670

18  8.75% 25/8/2017 4.729 4.695 4.682 

22 * 8% 7/6/2021 4.679 4.609 4.635 4.612

29 * 6% 7/12/2028 4.537 4.376 4.402 4.365

* Indicates strippable gilts  
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does not show a curve corresponding to the principal-strip yields because 
this would have necessitated making problematic conclusions about be-
havior in the long periods between the actual observed yields.) FIGURE 
16.6 illustrates the stripped yields against the true yield.
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FIGURE 16.5  Spot and Strip Yields on March 2, 1999
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FIGURE 16.6  Gilt Bond, Implied Spot and Coupon Strip Yields, 
March 2, 1999
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Two observations are worth making. First, the zero-coupon bonds are 
shown to be trading cheap relative to the spot curve throughout the term 
structure. This indicates that investors at the time were not prepared to 
hold strips unless they could earn a spread above their theoretical yields. 
This probably refl ected the inverted yield curve during the period, which 
meant that strips would be expensive relative to coupon bonds of the same 
maturity. It should be noted, however, that strips were expensive relative 
to the spot curve from the 11- to the 15-year point on the curve. Second, 
principal strips trade at lower yields than coupon strips of the same matu-
rity, refl ecting the fact that investors prefer holding the former.  

Determining Strip Values 
The three most common ways to calculate a strip’s value are to use

❑  the bond curve
❑  equivalent duration
❑  theoretical zero-coupon curve construction, also known as boot-

strapping

The fi rst method equates a strip’s value with its spread to a bond 
having the same maturity. The main drawback of this rough-and-ready 
approach is that it compares two instruments with different risk profi les. 
This is particularly true for longer maturities. The second method, which 
aligns strip and coupon-bond yields on the basis of modifi ed duration, 
is more accurate. The most common approach, however, is the third. 
This requires constructing a theoretical zero-coupon curve in the manner 
described above in connection with the relationship between coupon and 
zero-coupon yields. 

When the bond yield curve is fl at, the spot curve is too. When the 
yield curve is inverted, the theoretical zero-coupon curve must lie below 
it. This is because the rates discounting coupon bonds’ earlier cash fl ows 
are higher than the rate discounting their fi nal payments at redemption. 
In addition, the spread between zero-coupon and bond yields should 
decrease with maturity.

When the yield curve is positive, the theoretical zero-coupon curve 
lies above the coupon curve. Moreover, the steeper the coupon curve, the 
steeper the zero-coupon curve. 

One argument against bootstrapping is that the theoretical zero-coupon 
yields obtained are too sensitive for real-world trading. This is because the 
spot curve derivation requires a coupon yield for every year, even if, for 
example, the yield curve is constructed only from 1-year, 10-year, and 
30-year yields. The 30-year implied spot yield could be substantially higher 



308                                 Selected Market Trading Considerations

or lower depending on whether these maturity points are connected by a 
smooth curve or a straight line. This is particularly critical when there are 
few bonds between major yield points on the term structure—for example, 
eight liquid Treasuries between the 10- and 30-year maturities, with only 
two of them between the 20- and 30-year points. In such cases, fi lling in 
missing values using linear interpolation is inaccurate. To get around this 
problem, bond analysts use spline or other curve-smoothing techniques. 

Strips Market Anomalies
Treasury analysts have observed some long-standing anomalies in the 
Treasury-strip market. These include the following:

Principal strips trade at a premium to coupon strips. Investors 
fi nd principal strips more attractive because of their greater liquidity and, 
in some markets, for regulatory and tax reasons. This holds true even, at 
times, when their outstanding nominal amounts are lower than those of 
coupon strips.

The fi nal principal strip trades expensive relative to their theo-
retical values. The shape of the strip yield curve might be expected to be 
similar to that of the coupon curve, which normally slopes gently upward. 
However, because investors, as noted above, prefer principal to coupon 
strips, fi nal principal strips have greater weight than coupon strips. 

The strips with the longest maturities are the most expensive. As in 
all well-developed strip markets, Treasury strips having the longest dura-
tion and the greatest convexity trade expensive relative to their theoretical 
values. Conversely, those with intermediate maturities tend to trade cheap 
to the curve. This is evident from a comparison of the Treasury strip and 
coupon curves.

Intermediate maturity coupons are often cheap relative to the 
curve. Because of client demand for longer maturities, market makers 
often fi nd themselves with large quantities of intermediate-maturity 
coupon strips. In the Treasury strip market, 3- to 8-year coupon strips 
have traded cheap to the curve for this reason.

In contrast to the situation in most strip markets, Treasury strips 
with very short maturities do not trade expensive relative to the 
curve. When the yield curve is positive, short strips are often in demand 
because they enable investors to match liabilities without reinvestment 
risk and at a higher yield than they could get on coupon bonds of the same 
maturity. The Treasury strip yield curve, on the other hand, has been in-
verted from before there was a market. In other government strip markets, 
such as France’s, however, short maturities of up to three years are often 
well bid.
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Strips Trading Strategy
Market makers who strip Treasuries earn their profi ts through arbitrage 
that exploits the mispricing of the coupon bond. To preclude arbitrage 
opportunities, the bid price of an issued Treasury must be lower than the 
offer price of a synthetic one—that is, one reconstituted from a bundle of 
coupon and principal strips—and the Treasury’s offer must be higher than 
the synthetic’s bid. Otherwise, a risk-free profi t can be obtained by selling 
one instrument while simultaneously buying the other and pocketing the 
difference.

The potential profi t from stripping a Treasury coupon depends on 
current market Treasury yields and the implied spot yield curve. Consider 
a hypothetical 5-year, 8 percent Treasury trading at par—and therefore 
offering a yield to maturity of 8 percent—in the yield curve environment 
shown in fi gure 16.2. A market maker buys the Treasury and strips it with 
the intention of selling the resulting zero-coupon bonds at the yields indi-
cated in fi gure 16.2.

FIGURE 16.7 on the following page shows the present values of the 
Treasury’s cash fl ows, each discounted using the relevant market interest 
rate, and the present values of the strip cash fl ows, each discounted using 
the observed market yield corresponding to its maturity. A comparison of 
the two sets reveals an opportunity for arbitrage profi t.

The fourth column shows how much the market maker paid for 
each of the cash fl ows by buying the entire package of them—that is, 
by buying the bond at a yield of 8 percent. The $4 coupon payment 
due in three years, for instance, cost $3.1616, based on the 8 percent 
(4 percent semiannual) yield. But if the assumptions embodied in the 
table are correct, investors are willing to accept a lower yield, of 7.30 
percent (3.65 percent semiannual), for this maturity and pay $3.2258 
for the three-year strip corresponding to the coupon payment. On 
this one coupon payment, the market maker thus realizes a profi t 
of $0.0645, the difference between $3.2258 and $3.1613. The total 
profi t from selling all the strips is $0.4913 per $100 nominal of the 
original Treasury. 

What if, instead of the observed yields to maturity, investors required 
the theoretical spot yields from fi gure 16.3? FIGURE 16.8 shows that, in 
this case, the total proceeds from the sale of the zero-coupon Treasuries 
would be approximately $100, representing no profi t and thus rendering 
the stripping process uneconomical. These two scenarios demonstrate that 
profi t opportunities exist where strip yields deviate from theoretical ones. 

In practice, strip yields do differ from theoretical yields, indicating 
that there are (often very small) differences between derived and actual 
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prices. Do these differences present arbitrage opportunities? Because of 
the effi ciency and transparency of developed-country bond markets, the 
answer is usually no. The process of coupon stripping prevents Treasuries 
from trading at prices that are materially different from their theoretical 
prices based on the derived spot yield curve. When discrepancies arise, 
arbitrage activity causes them to disappear very quickly. In a liquid 
market such as that for U.S. Treasuries, the laws of supply and demand 
eliminate obvious arbitrage opportunities. Nevertheless, occasional op-
portunities do arise to exploit differences between actual market prices 
of strips and the theoretical prices implied by the benchmark coupon 
Treasury yield curve. 

FIGURE 16.7  Zero-Coupon Bonds Stripped from Hypothetical 
5-Year, 8 Percent Treasury, Valued at Market Yields 

        PRESENT
      PRESENT YIELD TO VALUE AT
   MATURITY YEARS TO CASH VALUE MATURITY YIELD TO
   DATE MATURITY FLOW  AT 8%  (%) MATURITY

1-Sep-99 0.5 4 3.8462 6.00 3.8835

1-Mar-00 1.0 4 3.6982 6.30 3.7594

1-Sep-00 1.5 4 3.5560 6.40 3.6393

1-Mar-01 2.0 4 3.4192 6.70 3.5060

1-Sep-01 2.5 4 3.2877 6.90 3.3760

1-Mar-02 3.0 4 3.1613 7.30 3.2258

1-Sep-02 3.5 4 3.0397 7.60 3.0809

1-Mar-03 4.0 4 2.9228 7.80 2.9453

1-Sep-03 4.5 4 2.8103 7.95 2.8164

1-Mar-04 5.0 104 70.2587 8.00 70.2587

   100.0000  100.4913
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Case Study: Treasury Strip Yields
and Cash Flow Analysis

This section illustrates the process of yield and cash fl ow analysis through 
the Bloomberg screens for the 4 percent Treasury maturing on February 
15, 20141—the 10-year benchmark during 2004—and its principal and 
coupon strips maturing on February 15, 2014. 

FIGURE 16.9 on the following page shows the cash fl ows received by 
a holder of $1 million nominal of the Treasury, together with the corre-
sponding spot rates. On the trade date—March 25, 2004, for settlement 
on March 26—the bond was priced at 99-19+, for a yield of 4.0479 
percent, and its convexity was 0.770.  

FIGURE 16.10 shows the cash fl ow for the Treasury’s principal strip. Its 
yield is 4.0751 percent, corresponding to a price of $67.10027 per $100 
nominal, which represents a spread above the gross redemption yield of 
the coupon Treasury. This relationship is expected, given a positive yield 

FIGURE 16.8  Zero-Coupon Bonds Stripped from Hypothetical 
5-Year, 8 Percent Treasury, Valued at Spot Yields 

        PRESENT
      PRESENT THEORETICAL VALUE
   MATURITY YEARS TO CASH VALUE SPOT RATE AT SPOT
   DATE MATURITY FLOW  AT 8%  (%) RATE

1-Sep-99 0.5 4 3.8462 6.000 3.8835

1-Mar-00 1.0 4 3.6982 6.308 3.7591

1-Sep-00 1.5 4 3.5560 6.407 3.6390

1-Mar-01 2.0 4 3.4192 6.720 3.5047

1-Sep-01 2.5 4 3.2877 6.936 3.3731

1-Mar-02 3.0 4 3.1613 7.394 3.2171

1-Sep-02 3.5 4 3.0397 7.712 3.0693

1-Mar-03 4.0 4 2.9228 7.908 2.9331

1-Sep-03 4.5 4 2.8103 8.069 2.8020

1-Mar-04 5.0 104 70.2587 8.147 69.7641

   100.0000  ~100.0000
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FIGURE 16.10  Cash Flow Analysis of the 4 Percent Treasury 
2014 Principal Strip, at a Yield of 4.075 Percent
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FIGURE 16.9  Cash Flow Analysis of the 4 Percent Treasury 
Due 2014 
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curve. There is only one cash fl ow: the redemption payment, which equals 
$1 million for a holding of $1 million nominal. The principal strip’s 
convexity is higher than the coupon bond’s, as is its duration, again as 
expected. 

Finally, FIGURE 16.11 shows the cash fl ow analysis for the coupon 
strip maturing on February 15, 2014, and trading at a yield of 4.089 
percent, for a price of 67.01 per $100 nominal. This illustrates an 
anomaly noted earlier: although the law of one price states that all strips 
maturing on the same date should cost the same—after all, why would 
investors require a different yield for a payment of interest than for one 
of principal?—principal strips in fact trade at lower yields than coupon 
strips, because they are more liquid and so more sought after. 

Chapter Notes 

1. In fact, this date is a Saturday, so the actual redemption proceeds will be paid on 
Monday, February 17, 2014.

FIGURE 16.11  Cash Flow Analysis of the February 2014 Coupon 
Strip, at a Yield of 4.089 Percent
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Approaches to Trading

The term trading covers a wide range of activities. Market makers, 
who quote two-way prices to market participants, may also be 
asked to provide customer service and build retail and institu-

tional volume. Alternatively, their sole responsibility may be to run their 
books at a profi t and maximize return on capital. 

Trading approaches are determined in part by the nature of the market 
involved. In a highly transparent and liquid market, such as that for U.S. 
Treasuries, price spreads are fairly narrow, so opportunities to profi t from 
the mispricing of individual securities, although not nonexistent, are rare. 
Participants in such markets may engage in relative value trades, or spread 
trading, which involves relationships such as the yield spread between 
individual securities or the future shape of the yield curve. On the deriva-
tives exchanges, a large volume of the trading is for hedging purposes, but 
speculation is also prominent. Bond and interest rate traders often use 
futures or options contracts to bet on the direction of particular markets. 
This is frequently the case with market makers who have little customer 
business—whether because they are newcomers, for historical reasons, or 
because they don’t want the risk related to servicing high-quality custom-
ers. They speculate to relieve the tedium, often with unfortunate results.

Speculative trading is based on the views of the trader, the desk, or 
the department head. The view may be that of the fi rm’s economics or 
research department—based on macro- and microeconomic factors affect-
ing not just the specifi c market but the economy as a whole—or it may 
be that of the individual trader, resulting from fundamental and technical 
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analysis. Because credit spreads are key to the performance of corporate 
bonds, those running corporate-debt desks focus on the fundamentals 
driving those spreads, concentrating on individual sectors as well as on the 
corporations themselves and their wider environment. Technical analysis, 
or charting, is based on the belief that the patterns displayed by continu-
ous-time series of asset prices repeat themselves. By detecting current pat-
terns, therefore, traders should be able to predict reasonably well how 
prices will behave in the future. Many traders combine fundamental and 
technical analysis, although chartists often say that for technical analysis to 
work effectively, it must be the only method used. 

Futures Trading
Because of the liquidity of their market and the ease and relative cheap-
ness of trading them, futures and other derivatives are often preferred to 
cash instruments, for both speculation and hedging. The essential consid-
erations in futures trading are the volatility of the associated commodity 
or fi nancial instrument and the leverage deriving from the fact that the 
margin required to establish a futures position is a very small percentage of 
the contract’s notional value. 

Uncovered trades, made without owning the underlying asset, are 
speculative bets on the direction of the market. Traders who believe short-
term U.S. interest rates are going to fall, for example, might buy Eurodol-
lar contracts—representing the level, at contract expiration, of the interest 
rate on a 3-month deposit of $1 million in commercial banks located 
outside the United States—on the Chicago Mercantile Exchange (CME). 
The contracts’ tick value—the price change associated with a movement 
of 0.005 of a percentage point in the interest rate—is $12.50. Say a trader 
buys one lot at 98.84, representing a future interest rate of 1.16 (100 
– 98.84 percent) percent, and sells it at the end of the day for 98.85, rep-
resenting a rate of 1.15 percent. That’s a rise of 0.01, or two ticks, resulting 
in a profi t of $25, from which brokerage fees are subtracted. 

Traders can also bet on their interest rate views using a cash-market 
product or a forward rate agreement (FRA)—a contract specifying the 
rate to be received or paid starting at specifi ed future date. Transactions 
are easier and cheaper, however, on the futures exchange, because of the 
low cost of dealing there and the liquidity of the market and narrow price 
spreads. 

More common than directional bets are trades on the spread between 
the rates of two different contracts. Consider FIGURES 17.1 and 17.2, both 
of which relate to the prices for the CME Eurodollar contract on March 
24, 2004 (contracts exist for every month in the year).
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Futures exchanges use the letters H, M, U, and Z to refer to the con-
tract months March, June, September, and December. The June 2004 
contract, for example, is denoted by “M4.” Forward rates can be calcu-
lated for any term, starting on any date. Figure 17.1 shows the futures 
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FIGURE 17.1 CME 90-Day Eurodollar Synthetic Forward Rates
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FIGURE 17.2 CME 90-Day Eurodollar Futures Strip Analysis
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prices on that day and the interest rate that each price implies. The stub 
is the interest rate from the current date to the expiry of the fi rst, or front 
month, contract—in this case, the June 2004 contract. Figure 17.2 lists the 
forward rates for six months, one year, and so on from the spot date. It is 
possible to trade a strip of contracts replicating any term out to the maxi-
mum maturity of the contract. This may be done to hedge or to speculate. 
Figure 17.2 shows that a spread exists between the cash and futures curves. 
It is possible to take positions on cash against futures, but it is easier to 
trade only on the futures exchange. 

Short-term money market rates often behave independently of the 
yield curve as a whole. Traders in this market watch for cash market 
trends—more frequent borrowing at a certain point in the curve, for ex-
ample, or market intelligence suggesting that one point of the curve will 
rise or fall relative to others. One way to exploit these trends is with a basis 
spread trade, running a position in a cash instrument such as a CD against 
a futures contract. The best way, though, is with a spread trade, shorting 
one contract against a long position in another. Say you believe that in 
June 2004 3-month interest rates will be lower than those implied by the 
current futures price, shown in Figure 17.1, but that in September 2004 
they will be higher. You can exploit this view by buying the M4 contract 
and shorting an equal weight of the U4—say one hundred lots of each. 
In doing so, you are betting not on the market direction but on the spread 
between two contracts. If rates move as you expect, you realize a profi t. 
Because it carries no directional risk, spread trading requires less margin 
than open-position trading. Figure 17.2 presents similar trade possibili-
ties, depending on your view of forward interest rates. It is also possible to 
arbitrage between contracts on different exchanges.

In the example above, you are shorting the spread, believing that it 
will narrow. Taking the opposite positions—short the near contract and 
long the far one—is buying the spread. This is done when the trader be-
lieves the spread will widen. Note that the difference between the two 
contracts’ prices is not limitless: a futures contract’s theoretical price 
provides an upper limit to the size of the spread or the basis, which, 
moreover, cannot exceed the cost of carry—that is, the net cost of buy-
ing the cash security today and delivering it into the futures market at 
contract expiry. The same principle applies to short-dated interest rate 
contracts, where cost of carry equals the difference between the interest 
cost of borrowing funds to buy the security and the income generated 
by holding it until delivery. The two associated costs for a Eurodollar 
spread trade are the notional borrowing and lending rates for buying one 
contract and selling another. 
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Traders who believe the cost of carry will decrease can sell the spread to 
exploit this view. Those with longer time horizons might trade the spread 
between the short-term interest rate contract and the long bond future. 
Such transactions are usually done by proprietary traders, because it is 
unlikely that one desk would be trading both 3-month and 10- or 20-year 
interest rates. A common example is a yield curve trade. Say you believe 
the U.S. dollar yield curve will steepen or fl atten between the 3-month 
and the 10-year terms. You can buy or sell the spread using the CME 
90-day Eurodollar contract and the U.S. Treasury 10-year note contract, 
traded on CBOT. Because one 90-day interest rate contract is not equiva-
lent to one bond contract, however, the trade must be duration-weighted 
to be fi rst-order risk neutral. The note contract represents $100,000 of a 
notional Treasury, although its tick value is $15.625; the Eurodollar con-
tract represents a $1 million time deposit. Equation (17.1) calculates the 
hedge ratio, with $1,000 being the value of a 1 percent change in the value 
of each contract.

 
h

tick P D
tick P

b
f

short ir
f=

×( )× ×

×( )×
100

100   (17.1)

where
tick = the tick value of the contract
D = the duration of the bond represented by the long bond contract
Pb
f = the price of the bond futures contract
Pshort ir
f

 = the price of the short-term deposit contract

The notional maturity of a long-bond contract is always given as a 
range: for the contract on the 10-year note, for example, it is six to ten 
years. The duration used to calculate the hedge ratio would be that of the 
cheapest-to-deliver bond.

A butterfl y spread involves two spreads between three contracts, the 
middle of which is perceived to be mispriced relative to the other two. The 
underlying concept is that the market will correct this mispricing, chang-
ing the middle contract’s relation to the outer contracts. Traders put on a 
butterfl y when they are not sure which contract or contracts will move to 
effect this adjustment. 

Consider fi gure 17.1 again. The prices of the front three contracts are 
98.84, 98.72, and 98.51. Traders may feel that the September contract, at 
a spread of +12.5 basis points to the June contract and –21 basis points to 
the December one, is undervalued. The question is, will this be corrected 
by a fall in the June and December prices or by a rise in the September 
one? The traders don’t need to choose. If they believe that the spread be-
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tween the June and September contracts will widen and the one between 
the September and December contracts will narrow, they can put on a 
butterfl y spread by buying the fi rst and selling the second. This is also 
known as selling the butterfl y spread. 

Yield Curves and Relative Value
Bond market participants take a keen interest in both the cash and the 
zero-coupon (spot) yield curves. In markets where an active zero-coupon 
bond market exists, the spreads between implied and actual zero-coupon 
yields also receive much attention. 

Determinants of Government Bond Yields
Market makers in government bonds consider various factors in deciding 
how to run their books. Customer business apart, decisions to purchase or 
sell securities will depend on their views about the following:

❑  whether short- and long-term interest rates are headed up or 
down

❑  which maturity point along the entire term structure offers the best 
value

❑ which of the issues having that maturity offers the best value

These three factors are related but are affected differently by market-
moving events. A report on the projected size of the government’s budget 
defi cit, for example, will not have much effect on two-year bond yields, but 
if the projections are unexpected, they could adversely affect long-bond 
yields. The type of effect—negative or positive—depends on whether the 
projections were higher or lower than anticipated. 

For a fi rst-level analysis, many market practitioners look no further 
than the traditional yield curve like the one shown in FIGURE 17.3. Inves-
tors with no particular views on the future shape of the curve or level of 
interest rates might adopt a neutral strategy, holding bonds with durations 
matching their investment horizons. If the curve is positive and they be-
lieve interest rates are likely to remain stable for a time, they might buy 
bonds with longer durations, thus picking up additional yield but increas-
ing their interest rate risk.

Once investors have determined which part of the yield curve to invest 
in or switch into, they must select specifi c issues. To make an informed 
choice, they use relative value analysis. 

Relative value analysis focuses on bond issues located in certain 
sectors, or “local” parts, of the curve. Because a bond’s yield is a func-
tion not just of its duration—after all, two issues with near-identical 
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duration can have different yields—the analysis assesses other factors as 
well. These include liquidity, the interplay of supply and demand, and 
coupon rate, all of which affect yield. FIGURE 17.4 illustrates the impact 
of coupon rate. 

The fi gure shows that, when the curve is inverted, investors can pick 
up yield while shortening duration. This might seem an anomalous situ-
ation, but in fact, liquidity issues aside, the market generally disfavors 
bonds with high coupons, so these usually trade cheap to the curve.

As with any commodity, supply and demand also play important roles 
in determining bond prices, and therefore their yields. A shortage of is-
sues at a particular point in the curve—the result, perhaps, of an effort 
to reduce public-sector debt—depresses yields for that maturity. On the 
other hand, when interest rates decline—ahead of or during a recession, 
say—and new bonds are issued with increasingly lower coupons, the stock 
of “outdated” high-coupon bonds increases and can end up trading at a 
higher yield. 

Demand is a function primarily of investors’ views of a country’s eco-
nomic prospects. It can also be affected, however, by government actions, 
such as the debt-buyback program instituted during the last years of the 
Clinton administration in response to the budget surplus. These buybacks 
reduced the supply of bonds in the market, artifi cially depressing yields 
because demand could not be met, especially for 30-year bonds, which the 

FIGURE 17.3 U.S. Treasury Yield Curve, March 25, 2004
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Treasury announced it was discontinuing. With the return to large budget 
defi cits during the Bush administration, however, issuance has resumed, 
and the impact of low supply has abated. 

Liquidity differences often produce yield differences among bonds 
with similar durations. Institutional investors prefer to hold the bench-
mark bond—the current 2-, 5-, 10-, or 30-year issue—which both 
increases its liquidity and depresses its yield. The converse is also true: 
because more-liquid bonds are easier to convert into cash if necessary, 
demand is higher for them, and their yields are thus lower. The effect 
of liquidity on yield can be observed by comparing the market price of 
a six-month bond with its theoretical value, derived by discounting its 
cash fl ow at the current 6-month T-bill rate. The market price—which 
is equal to the present value of its cash fl ow discounted at its yield—
is lower than the theoretical value, refl ecting the fact that the T-bill yield 
is lower than the bond yield, even though the two securities’ cash fl ows 
fall on the same day. The reason is liquidity: the T-bill is more readily 
realizable into cash at any time. 

A bond’s coupon and liquidity, as well as its duration, thus help 
determine the yield at which it trades. Accordingly, analyses of relative 
value among bonds consider these factors in conjunction with others.

FIGURE 17.4  Yields of Bonds with Similar Durations but 
Different Coupons, Given an Inverted Curve
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Characterizing the Complete Term Structure
As many readers undoubtedly have gathered, the traditional yield curve 
illustrated in Figure 17.4 is inadequate for analyzing the market. This is 
because it highlights only the curve’s general shape, which is not a suf-
fi cient basis on which to make trading decisions. This section describes a 
technique for gaining a more complete, and useful, picture.

FIGURE 17.5 graphs the March 2004 bond par yield curve against the 
T-bill yield curve for the same date. The two curves in FIGURE 17.6 repre-
sent the low-coupon and high-coupon yield spreads—that is, the yield dif-
ferences between coupon bonds trading at par and, in the fi rst case, bonds 
with coupons 100 basis points below the par yield and, in the second case, 
those with coupons 100 basis points above the par yield. By watching and 
comparing the curves illustrated in the two fi gures, investors can see the 
impact of coupons on the shape of the par yield curve and on yields at 
different maturity points.  

Identifying Relative Value in Government Bonds
This section discusses the factors that must be assessed in analyzing the rel-
ative values of government bonds. Since these securities involve no credit 
risk (unless they are emerging-market debt), credit spreads are not among 
the considerations. The zero-coupon yield curve provides the framework 
for all the analyses explored. 

FIGURE 17.5 T-Bill and Par Yield Curves, March 2004
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The objective of much bond analysis is to determine the relative values 
of individual securities and thus identify which should be purchased and 
which sold. Such decisions are, at the broadest level, a function of whether 
one thinks interest rates are going to rise or fall. Analysis in this sense 
identifi es securities’ absolute value. More locally based analysis focuses on 
specifi c sectors of the yield curve and is aimed at determining whether 
these will fl atten or steepen, or whether bonds with similar durations are 
trading at large enough spreads to warrant switching from one to another. 
This type of analysis identifi es relative value. 

On rare occasions, assessing relative value is fairly straightforward. If the 3-
year yield were 5.75 percent, the 2-year 5.70 percent, and 4-year 6.15 percent, 
for example, 3-year bonds would appear to be overpriced. Such situations, 
however, do not occur often in real life. More realistically, the 3-year bond’s 
value would have to be assessed relative to much shorter- or longer-dated in-
struments. Comparing a short-dated bond with other short-term securities is 
considerably different from comparing, say, the 2-year bond to the 30-year. 
Although, in a graph, the smooth curve linking 1-year to 5-year yields appears 
to be repeated from the 5-year out to the 30-year, in reality the very short-
dated sector of the yield curve often behaves independently of the long end.

One method of identifying relative value is to quantify the effect 
of coupon rates on bond yields. The relationship between the two is 
expressed in equation (17.2). 

FIGURE 17.6  Par and High- and Low-Coupon Yield Curves, 
March 2004
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 rm rm c C rm d C rmP PD P PD P= + × −( )+ × −( )max , min ,0 0  (17.2)

where
rm = the yield of the bond being analyzed
rmP = the yield of a par bond of specifi ed duration
CPD = the coupon of an arbitrary bond whose duration is similar to the 

par bond’s 
c = a coeffi cient representing the effect of a high coupon on a bond’s 

yield 
d = a coeffi cient representing the effect of a low coupon on a bond’s 

yield

When the par bond yield is lower than the coupon of the bond having 
a similar duration—that is, CPD > rmP, (17.2) reduces to (17.3).

 rm rm c C rmP PD P= + × −( )  (17.3)

Equation 17.3 expresses the yield spread between a high-coupon bond 
and a par bond as a linear function of the spread between the fi rst bond’s 
coupon and the par bond’s yield and coupon. In reality, this relationship 
may not be purely linear. The yield spread between the two bonds, for 
instance, may widen more slowly when the gap between the coupons is 
very large. Equation 17.3 thus approximates the effect of a high coupon 
on yield more accurately for bonds trading close to par. 

The same analysis can be applied to bonds with coupons lower than 
the coupon of the par bond having the same duration. 

A bond may be valued relative to comparable securities or against the 
par or zero-coupon yield curve. The fi rst method is more appropriate in 
certain situations. It is suitable, for instance, when a low-coupon bond is 
trading rich to the curve but fair compared with other low-coupon bonds. 
This may indicate that the overpricing is a property not of the individual 
bond but of all low-coupon bonds. 

The comparative value analysis can be extended from the local struc-
ture of the yield curve to groups of similar bonds. This is an important 
part of the analysis, because it is particularly informative to know the 
cheapness or costliness of a single issue relative to the whole yield curve.

Traders may use the technique described above to identify excess positive 
or negative yield spreads for all the bonds in the term structure, resulting in 
a list like that in FIGURE 17.7. From these, they might select two or more 
bonds, some of which are cheap and others expensive relative to the curve, 
then switch between them or put on a spread trade.
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The benchmark securities in the fi gure are all expensive relative to 
the par curve, and the less-liquid bonds are cheap. The 25/8 percent 2009 
appears cheap, but the 61/2 percent 2010, which has a shorter duration, 
offers a higher yield. This curious anomaly disappeared a few days later, so, 
if not taken advantage of immediately, the profi t opportunity was lost.

Hedging Bond Positions
A hedge is a position in a cash or off-balance-sheet instrument that removes 
the market risk exposure of another position. For example, a long position 
in 10-year bonds can be hedged with a short position in 20-year issues or 
with futures contracts. The concept is straightforward. Implementing it 
effectively, however, requires a precise calculation of the amount of the 
hedge needed, and that can be complex. 

Simple Hedging Approaches
Say an investor wishes to hedge a position in one of the bonds listed in 
fi gure 17.7 with a counterbalancing position in another of these issues. As 
explained in chapter 2, it is possible to calculate the size of the position 
required for a duration-weighted hedge using the ratio of the two bonds’ 
basis point values, or BPVs—that is, the change in their prices correspond-
ing to a 1–basis point change in yields. This approach is very common in 

FIGURE 17.7  Yields and Excess Yield Spreads for Five Treasuries 
and Less-Liquid Issues, March 24, 2004
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the market. It is based, however, on two assumptions that hinder its ef-
fectiveness: fi rst, that the two bonds’ yields have comparable volatility and, 
second, that changes in the yields of the two bonds are highly correlated. 
This implies that the changes in yields are highly positively correlated. 
Correlation refers to changes in direction, not absolute values. Highly cor-
related means that if Bond A increases from 10 to 12, and Bond B is at 
79.25, its price will increase too. In situations where one or both of these 
assumptions fails to hold, the hedge is compromised. 

The assumption of comparable yield volatility becomes increasingly 
unrealistic the more the bonds differ in terms of market risk and behavior. 
Say the position to be hedged is a $1 million holding of the 5-year issue 
in fi gure 17.7 and the hedging instrument is the 5-year bond. A duration-
weighted hedge would consist of a short position in the 5-year. Even if the 
two bonds’ yields are perfectly correlated, they might still change by differ-
ent amounts if the bonds have different yield volatilities. Say the 2-year is 
twice as volatile as the 5-year. That means the 5-year yield moves only half 
as far as the 2-year in the same situation. For instance, an event causing 
the latter to rise 5 basis points would effect a mere 2.5-basis-point increase 
in the former. So a hedge calculated according to the two bonds’ BPV and 
assuming an equal change in yield for both bonds would be incorrect. 
Specifi cally, the short position in the 5-year bond would effectively hedge 
only half the risk exposure of the 2-year position. 

The assumption of perfectly correlated yield changes is similarly un-
realistic and so causes similar misweightings. Although bond yields across 
the whole term structure are positively correlated most of the time, this is 
not always the case. Returning to the example, assume that the 2-year and 
5-year bonds possess identical yield volatilities but that changes in their 
yields are uncorrelated. This means that a 1-basis-point fall or rise in the 
2-year yield implies nothing about change in the 5-year yield. That, in 
turn, means that the 5-year bonds cannot be used to hedge 2-year bonds, 
at least not with any certainty. 

Hedge Analysis
From the preceding discussion, it is clear that at least two factors beyond 
BPV determine the effectiveness of a bond hedge: the bonds’ yield volatili-
ties and the extent to which changes in their yields are correlated. 

FIGURE 17.8 shows the standard deviations—that is, volatilities—and 
correlations of weekly yield changes for a set of Treasuries during the nine 
months to March 2004. Note that, contrary to the assumptions inher-
ent in the BPV hedge calculation, volatilities are far from uniform, and 
yield changes are imperfectly correlated. The standard deviation of weekly 
yield changes is highest for the short-dated paper and declines throughout 
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the period for longer-dated paper. Correlations, as might be expected, 
are highest among bonds in the same maturity sectors and decline as 
they move farther apart along the yield curve; for example, two-year 
bond yields are more positively correlated with fi ve-year yields than with 
30-year ones.

Hedges can be made more accurate by adjusting their weightings 
according to the standard relationship for correlations and the effect of 
correlation. Consider two bonds with nominal values M1 and M2. If the 
bonds’ yields change by ∆r1 and ∆r2, the net change in the position’s 
value is given by equation (17.4)

 ∆ ∆ ∆PV M BPV r M BPV r= +1 1 1 2 2 2  (17.4)

The change in net value of a two-bond position is a function of the two 
securities’ nominal values, their volatilities, and the correlation between 
their yield changes. The standard deviation of such a position may there-
fore be expressed by equation (17.5).

 σ σ σ σ σ ρpos M BPV M BPV M M BPV BPV= + +1
2

1
2

1
2

2
2

2
2

2
2

1 2 1 2 1 22  (17.5)

FIGURE 17.8  Yield Volatilities and Correlations, Selected Bonds, 
Nine Months to March 2004

 SEGMENT
 2-YEAR 3-YEAR 5-YEAR 10-YEAR 20-YEAR 30-YEAR
  VOLATILITY (BP) 18.7 19.5 20.2 20.0 20.6 21.2

CORRELATION

2-year 1.000 0.973 0.949 0.919 0.887 0.879

3-year 0.973 1.000 0.961 0.935 0.901 0.889

5-year 0.949 0.961 1.000 0.968 0.951 0.945

10-year 0.919 0.935 0.968 1.000 0.981 0.983

20-year 0.887 0.901 0.951 0.981 1.000 0.987

30-year 0.879 0.889 0.945 0.983 0.987 1.000



                                      Approaches to Trading 329

where 
ρ = the correlation between the yield volatilities of bonds 1 and 2 

Equation (17.5) can be rearranged as shown in (17.6) to solve for the 
optimum hedge value for any bond.

 M BPV
BPV

M2
1 1

2 2
1= −

ρ σ
σ

 (17.6)

where
M2 = the nominal value of the bond used to hedge nominal value M1 

of the fi rst bond

The lower the correlation between the two bonds’ yields—and, thus, 
the more independent changes in one are of changes in the other—
the smaller the optimal hedge position. If the two bonds’ yields exhibit 
identical volatility and change in lockstep—a correlation of 1—equation 
(17.6) reduces to equation (17.7), the traditional hedge calculation, based 
solely on BPV.

 M BPV
BPV

M2
1

2
1=  (17.7)

Summary of the Derivation 
of the Optimum-Hedge Equation

According to equation (17.5), the variance of a net change in the value of 
a two-bond portfolio is given by equation (17.8), which can be rewritten 
as (17.9), using the partial derivative of the variance σ2 with respect to the 
nominal value of the second bond.

 σ σ σ σ σ ρpos M BPV M BPV M M BPV BPV2
1
2

1
2

1
2

2
2

2
2

2
2

1 2 1 2 1 22= + +  (17.8)
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∂
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2

2
2

2 2
2

2
2

1 1 2 1 22 2
M

M BPV M BPV BPV  (17.9)

Setting equation (17.5) to zero and solving for M2 gives equation 
(17.10), which is the hedge quantity for the second bond.

 M BPV
BPV

M2
1 1

2 2
1= −

ρ σ
σ

 (17.10)
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The Black-Scholes Model 
in Microsoft Excel

A P P E N D I X

The fi gure on the following page shows the spreadsheet formulas 
required to build the Black-Scholes model in Microsoft Excel. 
The Analysis Tool-Pak add-in must be available, otherwise some 

of the function references may not work. Setting up the cells in the way 
shown enables the fair value of a vanilla call or put option to be calcu-
lated. The latter calculation employs the put-call parity theorem.

Price of underlying 100
Volatility 0.0691
Option maturity 3 months
Strike price 99.5
Risk-free rate 5%



Microsoft Excel Calculation of Vanilla Option Price

  CELL C D

8 Underlying price, S 100

9 Volatility % 0.0691

10 Option maturity years 0.25

11 Strike price, X 99.50

12 Risk-free interest rate % 0.05

13

14

15   CELL FORMULAE:

16 ln (S /X ) 0.0050125418 =LN (D8/D11)

17 Adjusted return 0.0000456012500 =((D12-D9)^2/ 2)*D10

18 Time adjusted volatility 0.1314343943 =(D9*D10)^0.5

19 d2 0.0384841662 =(D16+D17)/D18

20 N (d2) 0.5153492331 =NORMSDIST(D19)

21

22 d1 0.1699185605 =D19+D18

23 N (d1) 0.5674629098 =NORMSDIST(D22)

24 e -rt 0.9875778005 =EXP(-D10*D12)

25

26 CALL 6.1060184985 =D8*D23-D11*D20*D24

27 PUT 4.3700096476  * =D26-D8+D11*D24

* By put-call parity, P = C - S + Xe -rt
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